One Step Closer to the “Paper of the Future” | Research Data Management @Harvard

peter.suber's bookmarks 2019-03-18


"As a researcher who is trying to understand the structure of the Milky Way, I often deal with very large astronomical datasets (terabytes of data, representing almost two billion unique stars). Every single dataset we use is publicly available to anyone, but the primary challenge in processing them is just how large they are. Most astronomical data hosting sites provide an option to remotely query sources through their web interface, but it is slow and inefficient for our science....

To circumvent this issue, we download all the catalogs locally to Harvard Odyssey, with each independent survey housed in a separate database. We use a special python-based tool (the “Large-Survey Database”) developed by a former post-doctoral scholar at Harvard, which allows us to perform fast queries of these databases simultaneously using the Odyssey computing cluster....

To extract information from each hdf5 file, we have developed a sophisticated Bayesian analysis pipeline that reads in our curated hdf5 files and outputs best fits for our model parameters (in our case, distances to local star-forming regions near the sun). Led by a graduate student and co-PI on the paper (Joshua Speagle), the python codebase is publicly available on GitHub with full API documentation. In the future, it will be archived with a permanent DOI on Zenodo. Also on GitHub users will find full working examples of the code, demonstrating how users can read in the publicly available data and output the same style of figures seen in the paper. Sample data are provided, and the demo is configured as a jupyter notebook, so interested users can walk through the methodology line-by-line...."


From feeds:

Open Access Tracking Project (OATP) » peter.suber's bookmarks

Tags: oa.astronomy oa.genres oa.floss oa.mining hu.oa oa.harvard.u oa.dataverse oa.open_notebook oa.jupyter

Date tagged:

03/18/2019, 13:33

Date published:

03/18/2019, 09:33