Keratinocyte Growth Factor Stimulates Growth of p75<sup>+</sup> Neural Crest Lineage Cells During Middle Ear Cholesteatoma Formation in Mice
pubmed: wnt1 2023-01-29
Am J Pathol. 2022 Sep 28:S0002-9440(22)00241-3. doi: 10.1016/j.ajpath.2022.07.010. Online ahead of print.
ABSTRACT
During development, cranial neural crest (NC) cells display a striking transition from collective to single-cell migration and undergo a mesenchymal-to-epithelial transformation to form a part of the middle ear epithelial cells (MEECs). While MEECs derived from NC are known to control homeostasis of the epithelium and repair from otitis media, paracrine action of keratinocyte growth factor (KGF) promotes the growth of MEECs and induces middle ear cholesteatoma (cholesteatoma). The animal model of cholesteatoma was previously established by transfecting a human KGF-expression vector. Herein, KGF-inducing cholesteatoma was studied in Wnt1-Cre/Floxed-enhanced green fluorescent protein (EGFP) mice that conditionally express EGFP in the NC lineages. The cytokeratin 14-positive NC lineage expanded into the middle ear and formed cholesteatoma. Moreover, the green fluorescent protein-positive NC lineages comprising the cholesteatoma tissue expressed p75, an NC marker, with high proliferative activity. Similarly, a large number of p75-positive cells were observed in human cholesteatoma tissues. Injections of the immunotoxin murine p75-saporin induced depletion of the p75-positive NC lineages, resulting in the reduction of cholesteatoma in vivo. The p75 knockout in the MEECs had low proliferative activity with or without KGF protein in vitro. Controlling p75 signaling may reduce the proliferation of NC lineages and may represent a new therapeutic target for cholesteatoma.
PMID:36210210 | DOI:10.1016/j.ajpath.2022.07.010