Glueing wounds back together, human cloning, and using bio-nano to infiltrate synthetic DNA.
Antarctica Starts Here. » Antarctica Starts Here. 2014-05-02
Summary:
If you've ever been injured enough to need stitches, you know that it's no picnic. Administration of local anesthetic aside (which usually involves multiple shallow injections directly into the wound site), flesh is touchy stuff to suture back together. Get the suture too close to the edge of the wound and it might rip through and pop open again. There may not be enough usable skin far enough away from wound site to stick a needle through (such as on particularly skinny fingers or the backs of some ankles). Some parts of the body just don't take well to being sewn up because they're too soft, like the liver or the spleen. Kind of icky, when you think about it. A French research team published a paper in the journal Angewandte Chemie about a novel technique for wound closure that involves neither needle nor thread, but a solution of nanometer-scale particles of iron oxide and silicon dioxide in an aqueous solution sprayed directly into the wound, which is then pinched together for about a minute. Other surgical adhesives have been used over the years with varying degrees of effectiveness (makers have no doubt tried using superglue to patch up minor injuries (and alerted neighbors for blocks around)) but adhesives also have varying degrees of toxicity within the body; additionally, they don't always work under suboptimal (read: inside the body and mixed with body fluids) conditions. The principle is similar but counterintuitive in a biotech context: The nanoparticles are attracted to the membranes of the cells that comprise the surfaces of the open wound. They also probably bind to one another strongly due to their immensely small size (billionths of a meter) which would bridge any gaps between surfaces. This seems to help the surfaces of the wound stick to each other, holding the wound closed to facilitate the healing process. The nanoparticles are small enough that they don't seem to impede the regeneration of tissue any, unlike a layer of surgical adhesive or the materials that some sutures are made of.
In other bioengineering news that is certain to make the blood pressure of some go stratospheric, human cloning has taken a step forwards. Through a process called somatic cell nuclear transfer, in which the nucleus of a cell is extracted under a microscope using microsurgical techniques and inserted into an unfertilized egg cell, cells from a 35 and a 75 year old human were successfully cloned and caused to develop into early stage embryos. Those cloned early stage embryos were then used to derive pluripotent stem cells that were genetically identical to the donors. The cultured stem cells were induced to differentiate into several different kinds of mature cells in vitro, including cardiomyocytes, or heart muscle cells. This represents a breakthrough because under most circumstances it's very difficult to get nucleii from adult human cells to do this sort of thing; it seems comparatively easier to induce adult cells to de-differentiate back into pluripotent stem cells and then re-differentiate than it is to get an adult nucleus to function properly within an egg cell. The cloned embryos would probably not have been able to develop into sci-fi perfect clones of the donors if they were incubated under optimal conditions for reason I don't pretend to understand, but I hypothesize that the phenomenons of epigenetics and telomere shortening due to the aging process are implicated (to some extent, anyway). Cloned complex animals (like Dolly the sheep) take many, many attempts and fiddly alterations to the process just to get going, and there are invariably many failed attempts that fail to grow properly. Clone masters we are not. Not yet, anyway.Along those lines, another procedure arguably just as difficult to accomplish as cloning is modifying the inner workings of a living cell and keeping it, well, living. After all, viruses do it every day so how hard could it possibly be?
Heh heh heh.
Scientists at the Wyss Institute for Biologically Inspired Engineering at Harvard University published a paper in the journal