Eve: the development diary of a programming environment aimed at non-programmers

Lambda the Ultimate - Programming Languages Weblog 2015-07-01

Summary:

In spring 2012 Chris Granger successfully completed a Kickstarter fundraising and got $300K (instead of the requested $200K) to work on a live-feedback IDE inspired by Bret Victor "Inventing on principle" talk. The IDE project was called Light Table. It initially supported Clojure (the team's favourite language) only, but eventually added support for Javascript and Python. In January 2014, Light Table was open sourced, and in October 2014 the Light Table development team announced that they decided to create a new language, Eve, that would be a better fit for their vision of programming experience.

There is little public about Eve so far, no precise design documents, but the development team has a public monthly Development Diary that I found fairly interesting. It displays an interesting form of research culture, with in particular recurrent reference to academic works that are coming from outside the programming-language-research community: database queries, Datalog evaluation, distributed systems, version-control systems. This diary might be a good opportunity to have a look at the internals of a language design process (or really programming environment design) that is neither academic nor really industrial in nature. It sounds more representative (I hope!) of the well-educated parts of startup culture.

Eve is a functional-relational language. Every input to an Eve program is stored in one of a few insert-only tables. The program itself consists of a series of views written in a relational query language. Some of these views represent internal state. Others represent IO that needs to be performed. Either way there is no hidden or forgotten state - the contents of these views can always be calculated from the input tables.

Eve is designed for live programming. As the user makes changes, the compiler is constantly re-compiling code and incrementally updating the views. The compiler is designed to be resilient and will compile and run as much of the code as possible in the face of errors. The structural editor restricts partially edited code to small sections, rather than rendering entire files unparseable. The pointer-free relational data model and the timeless views make it feasible to incrementally compute the state of the program, rather than starting from scratch on each edit.

The public/target for the language is described as "non-programmers", but in fact it looks like their control group has some previous experience of Excel. (I would guess that experimenting with children with no experience of programming at all, including no Excel work, could have resulted in very different results.)

Posts so far, by Jamie Brandon:

Some random quotes.

Retrospective:

Excited, we presented our prototype to a small number of non-programmers and sat back to watch the magic. To our horror, not a single one of them could figure out what the simple example program did or how it worked, nor could they produce any useful programs themselves. The sticking points were lexical scope and data structures. Every single person we talked to just wanted to put data in an Excel-like grid and drag direct references. Abstraction via symbol binding was not an intuitive or well-liked idea.

[...]

Our main data-structure was now a tree of tables. Rather than one big top-level function, we switched to a pipeline of functions. Each function pulled data out of the global

Link:

http://lambda-the-ultimate.org/node/5156

From feeds:

Gudgeon and gist ยป Lambda the Ultimate - Programming Languages Weblog

Tags:

teaching & learning

Date tagged:

07/01/2015, 04:14

Date published:

05/14/2015, 08:27