allAfrica.com: Africa: Large Volumes of Data Are Challenging Open Science (Page 1 of 3)
gavinbaker's bookmarks 2014-02-23
Summary:
"Open data and open science are not new concepts. Arguably they were introduced by Henry Oldenburg, the first secretary of the United Kingdom's newly created Royal Society in the 1660s.
Oldenburg frequently corresponded on scientific matters and persuaded the new society to publish the 'letters' he received - provided that a novel concept was accompanied by the evidence (the data) on which it depended.
Oldenburg's innovation ushered in an era of 'open science', meaning the concurrent publication of both concept and evidence. This allowed scientists to scrutinise each other's logic, and replicate or refute observations or experiments.
It ensured that science was 'self-correcting' and therefore cumulative, which was the foundation for the scientific revolutions of the eighteenth and nineteenth centuries.
Self-correction was recently exemplified when a beam of neutrinos fired from CERN (the European Organization for Nuclear Research) to a laboratory 730 kilometres away seemed to travel faster than the speed of light.
The detailed results were made openly available, resulting in the discovery of a timing error and a repeat experiment that respected the universal speed limit.
But the 'data explosion' of the past 20 years poses severe challenges to the principle of self-correction.
The volume and complexity of the data that can be acquired, stored and manipulated, coupled with ubiquitous technologies for instant communication, have created a flood of data - 90 per cent of all data were generated in the last two years. [1]
Conventional, printed journals can no longer contain the data on which a paper they publish is based, which means losing the vital link between concept and evidence.
A consequence of this was highlighted in 2012 when attempts to replicate the findings of 50 benchmark papers in preclinical oncology were only possible in 11 per cent of cases. [2] This was mainly because of missing data, in addition to the common cause of erroneous analysis ..."