The L-functions and modular forms database
Gowers's Weblog 2018-03-10
With each passing decade, mathematics grows substantially. As it grows, mathematicians are forced to become more specialized — in the sense of knowing a smaller fraction of the whole — and the time and effort needed to get to the frontier of what is known, and perhaps to contribute to it, increases. One might think that this process will eventually mean that nobody is prepared to make the effort any more, but fortunately there are forces that work in the opposite direction. With the help of the internet, it is now far easier to find things out, and this makes research a whole lot easier in important ways.
It has long been a conviction of mine that the effort-reducing forces we have seen so far are just the beginning. One way in which the internet might be harnessed more fully is in the creation of amazing new databases, something I once asked a Mathoverflow question about. I recently had cause (while working on a research project with a student of mine, Jason Long) to use Sloane’s database in a serious way. That is, a sequence of numbers came out of some calculations we did, we found it in the OEIS, that gave us a formula, and we could prove that the formula was right. The great thing about the OEIS was that it solved an NP-ish problem for us: once the formula was given to us, it wasn’t that hard to prove that it was correct for our sequence, but finding it in the first place would have been extremely hard without the OEIS.
I’m saying all this just to explain why I rejoice that a major new database was launched today. It’s not in my area, so I won’t be using it, but I am nevertheless very excited that it exists. It is called the L-functions and modular forms database. The thinking behind the site is that lots of number theorists have privately done lots of difficult calculations concerning L-functions, modular forms, and related objects. Presumably up to now there has been a great deal of duplication, because by no means all these calculations make it into papers, and even if they do it may be hard to find the right paper. But now there is a big database of these objects, with a large amount of information about each one, as well as a great big graph of connections between them. I will be very curious to know whether it speeds up research in number theory: I hope it will become a completely standard tool in the area and inspire people in other areas to create databases of their own.