Polymath15, fifth thread: finishing off the test problem?
What's new 2018-03-10
This is the fifth “research” thread of the Polymath15 project to upper bound the de Bruijn-Newman constant , continuing this post. Discussion of the project of a non-research nature can continue for now in the existing proposal thread. Progress will be summarised at this Polymath wiki page.
We have almost finished off the test problem of showing that whenever
. We have two useful approximations for
, which we have denoted
and
, and a normalising quantity
that is asymptotically equal to the above expressions; see the wiki page for definitions. In practice, the
approximation seems to be accurate within about one or two significant figures, whilst the
approximation is accurate to about three or four. We have an effective upper bound
where the expressions are quite small in practice (
is typically about two orders of magnitude smaller than the main term
once
is moderately large, and the error terms
are even smaller). See this page for details. In principle we could also obtain an effective upper bound for
(the
term would be replaced by something smaller).
The ratio takes the form of a difference
of two Dirichlet series, where
is a phase whose value is explicit but perhaps not terribly important, and the coefficients
are explicit and relatively simple (
is
, and
is approximately
). To bound this away from zero, we have found it advantageous to mollify this difference by multiplying by an Euler product
to cancel much of the initial oscillation; also one can take advantage of the fact that the
are real and the
are (approximately) real. See this page for details. The upshot is that we seem to be getting good lower bounds for the size of this difference of Dirichlet series starting from about
or so. The error terms
are already quite small by this stage, so we should soon be able to rigorously keep
from vanishing at this point. We also have a scheme for lower bounding the difference of Dirichlet series below this range, though it is not clear at present how far we can continue this before the error terms
become unmanageable. For very small
we may have to explore some faster ways to compute the expression
, which is still difficult to compute directly with high accuracy. One will also need to bound the somewhat unwieldy expressions
by something more manageable. For instance, right now these quantities depend on the continuous variable
; it would be preferable to have a quantity that depends only on the parameter
, as this could be computed numerically for all
in the remaining range of interest quite quickly.
As before, any other mathematical discussion related to the project is also welcome here, for instance any summaries of previous discussion that was not covered in this post.