Signed binomial matrices of small order

Wildon's Weblog 2020-12-28

Let B(n) denote the n \times n Pascal’s Triangle matrix defined by B(n)_{xy} = \binom{x}{y}, where, as in the motivating paper, we number rows and columns of matrices from 0. Let J(n)_{xy} = [x+y=n-1] be the involution reversing the order of rows (or columns) of a matrix, and let

D^\pm(n) = \mathrm{Diag}(1,-1,\ldots, (-1)^{n-1}).

Since n is fixed throughout, we shall write B, J and D^\pm for readability in proofs.

Claim 1. For any a \in \mathbb{N}, and any n \ge 2, the matrix D^\pm(n)B_a(n) is an involution.

Proof. Since n\ge 2, the matrix is not the identity. Since \bigl( D^\pm B_a \bigr)_{xy} = (-1)^x \binom{x+a}{y+a} we have

\begin{aligned} \bigl( D^\pm &B_a D^\pm B_a \bigr)_{xz} = (-1)^x \sum_y (-1)^y \binom{x+a}{y+a} \binom{y+a}{z+a} \\ &= (-1)^x \sum_y \binom{x+a}{z+a}\binom{x-z}{y-z}(-1)^y \\ &= (-1)^{x+z} \binom{x+a}{z+a} \sum_r \binom{x-z}{r}(-1)^r \\ &= (-1)^{x+z} \binom{x+a}{z+a} [x=z] (-1)^{x+z} \\ &= [x=z] \end{aligned}

as required. \quad\Box

Claim 2. For any n \ge 2, the matrix D^\pm(n)J(n)B(n) has order 3 if n is odd and order 6 if n is even. \quad\Box

Proof. Since \bigl( D^\pm J B \bigr)_{xy} = (-1)^x \binom{n-1-x}{y} we have

\begin{aligned} \bigl( D^\pm J B D^\pm J B D^\pm J B \bigr)_{xw} &= (-1)^x \sum_y \sum_z (-1)^{y+z} \binom{n-1-x}{y} \binom{n-1-y}{z} \binom{n-1-z}{w} \\ &= (-1)^{x+n-1} \sum_z \Bigl( \sum_y \binom{n-1-x}{y} \binom{-z-1}{n-1-y-z}  \Bigr) \binom{n-1-z}{w} \\ &= (-1)^{x+n-1} \sum_z \binom{n-2-x-z}{n-1-z}\binom{n-1-z}{w} \\ &= (-1)^{x} \sum_z (-1)^{z}\binom{x}{n-1-z}\binom{n-1-z}{w} \\ &= (-1)^{x+n-1} \sum_r (-1)^r \binom{x}{r} \binom{r}{w} \\&= (-1)^{x+n-1} (-1)^x [x=w] = (-1)^{n-1}. \end{aligned}

It is easily seen that the matrix is not a scalar multiple of the identity, therefore it has the claimed order. \quad\Box

Claim 3. We have B(n)^{-1} J(n) B(n) = D^\pm(n) J(n) B(n) J(n) and B(n) J(n) B(n)^{-1} = J(n) B(n) J(n) D^\pm(n).

Proof. The alternating sum used at the end of both the previous two claims can be used to show that B(n)^{-1}_{xy} = (-1)^{x+y} \binom{x}{y}. Hence

\begin{aligned} \bigl(B(n)J(n)B(n)^{-1} \bigr)_{xz} &= \sum_{y} (-1)^{x+y} \binom{x}{y} \binom{n-1-y}{z} \\ &= (-1)^x\sum_y (-1)^y  \binom{x}{y} (-1)^{n-1-y-z} \binom{-z-1}{n-1-y-z} \\ &= (-1)^{x+n-1-z} \binom{x-z-1}{n-1-z} \\ &= (-1)^{x+n-1-z} \binom{n-1-x}{n-1-z} (-1)^{n-1-z} \\ &= (-1)^x \binom{n-1-x}{n-1-z} \\ &= \bigl( D^\pm(n)J(n)B(n)J(n) \bigr)_{xz}\end{aligned}

as required. The second identity is proved very similarly. \quad\Box

Let X^\circ denote the half-turn rotation of an n \times n matrix X, as defined by X^\circ = J(n)XJ(n). By Claim 3, B(n)D^\pm(n)B(n)^\circ D^\pm = BD^\pmJBJD^\pm is conjugate to JD^\pm BD^\pm JB and so to (-1)^{n-1} (D^\pm JB)(D^\pm JB). Hence this matrix has order 3 when n is odd and order 6 when $n$ is even. We state without proof some further identities along these lines. Let B_a(n) be the shifted Pascal’s Triangle matrix defined by B_a(n)_{xy} = \binom{x+a}{y+a}.

Claim 4. The matrix B(n)D^\pm(n)B_n(n)D^\pm(n) has order 3. If n is even then B(n)D^\pm(n)B_1(n)D^\pm(n) has order 12. If n is odd then B_1(n)D^\pm(n)B_1(n)D^\pm(n) has order $3$.

The second case seems particularly remarkable. There are some obstructions (related to root systems) to integer matrices having finite order. These identities were discovered as a spin-off of a somewhat involved construction with linear algebra; I have no idea how to motivate them in any other way. For instance, how looking at

B(6)D^\pm(6)B_1(6)D^\pm(6) = \left( \begin{matrix}  1 & -6 & 15 & -20 & 15 & -6 \\ 1 & -5 & 10 & -10 & 5 & -1 \\ 1 & -4 & 6 & -4 & 1 & 0 \\ 1 & -3 & 3 & -1 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \end{matrix} \right)

would one guess that it has order 12?