The ABC conjecture has (still) not been proved

Persiflage 2018-03-12

The ABC conjecture has (still) not been proved.

Five years ago, Cathy O’Neil laid out a perfectly cogent case for why the (at that point recent) claims by Shinichi Mochizuki should not (yet) be regarded as constituting a proof of the ABC conjecture. I have nothing further to add on the sociological aspects of mathematics discussed in that post, but I just wanted to report on how the situation looks to professional number theorists today. The answer? It is a complete disaster.

This post is not about making epistemological claims about the truth or otherwise of Mochizuki’s arguments. To take an extreme example, if Mochizuki had carved his argument on slate in Linear A and then dropped it into the Mariana Trench, then there would be little doubt that asking about the veracity of the argument would be beside the point. The reality, however, is that this description is not so far from the truth.

Each time I hear of an analysis of Mochizuki’s papers by an expert (off the record) the report is disturbingly familiar: vast fields of trivialities followed by an enormous cliff of unjustified conclusions. The defense of Mochizuki usually rests on the following point: The mathematics coming out of the Grothendieck school followed a similar pattern, and that has proved to be a cornerstone of modern mathematics. There is the following anecdote that goes as follows:

The author hears the following two stories: Once Grothendieck said that there were two ways of cracking a nutshell. One way was to crack it in one breath by using a nutcracker. Another way was to soak it in a large amount of water, to soak, to soak, and to soak, then it cracked by itself. Grothendieck’s mathematics is the latter one.

While rhetorically expedient, the comparison between Mochizuki and Grothendieck is a poor one. Yes, the Grothendieck revolution upended mathematics during the 1960’s “from the ground up.” But the ideas coming out of IHES immediately spread around the world, to the seminars of Paris, Princeton, Moscow, Harvard/MIT, Bonn, the Netherlands, etc. Ultimately, the success of the Grothendieck school is not measured in the theorems coming out of IHES in the ’60s but in how the ideas completely changed how everyone in the subject (and surrounding subjects) thought about algebraic geometry.

This is not a complaint about idiosyncrasy or about failing to play by the rules of the “system.” Perelman more directly repudiated the conventions of academia by simply posting his papers to the arXiV and then walking away. (Edit: Perelman did go on an extensive lecture tour and made himself available to other experts, although he never submitted his papers.) But in the end, in mathematics, ideas always win. And people were able to read Perelman’s papers and find that the ideas were all there (and multiple groups of people released complete accounts of all the details which were also published within five years). Usually when there is a breakthrough in mathematics, there is an explosion of new activity when other mathematicians are able to exploit the new ideas to prove new theorems, usually in directions not anticipated by the original discoverer(s). This has manifestly not been the case for ABC, and this fact alone is one of the most compelling reasons why people are suspicious.

The fact that these papers have apparently now been accepted by the Publications of the RIMS (a journal where Mochizuki himself is the managing editor, not necessary itself a red flag but poor optics none the less) really doesn’t change the situation as far as giving anyone a reason to accept the proof. If anything, the value of the referee process is not merely in getting some reasonable confidence in the correctness of a paper (not absolute certainty; errors do occur in published papers, usually of a minor sort that can be either instantly fixed by any knowledgeable reader or sometimes with an erratum, and more rarely requiring a retraction). Namely, just as importantly, it forces the author(s) to bring the clarity of the writing up to a reasonable standard for professionals to read it (so they don’t need to take the same time duration that was required for the referees, amongst other things). This latter aspect has been a complete failure, calling into question both the quality of the referee work that was done and the judgement of the editorial board at PRIMS to permit papers in such an unacceptable and widely recognized state of opaqueness to be published. We do now have the ridiculous situation where ABC is a theorem in Kyoto but a conjecture everywhere else. (edit: a Japanese reader has clarified to me that the newspaper articles do not definitively say that the papers have been accepted, but rather the wording is something along the lines of “it is planned that PRIMS will accept the paper,” whatever that means. This makes no change to the substance of this post, except that, while there is still a chance the papers will not be accepted in their current form, I retract my criticism of the PRIMS editorial board.)

So why has this state persisted so long? I think I can identify three basic reasons. The first is that mathematicians are often very careful (cue the joke about a sheep at least one side of which is black). Mathematicians are very loath to claim that there is a problem with Mochizuki’s argument because they can’t point to any definitive error. So they tend to be very circumspect (reasonably enough) about making any claims to the contrary. We are usually trained as mathematicians to consider an inability to understand an argument as a failure on our part. Second, whenever extraordinary claims are made in mathematics, the initial reaction takes into account the past work of the author. In this case, Shinichi Mochizuki was someone who commanded significant respect and was considered by many who knew him to be very smart. It’s true (as in the recent case of Yitang Zhang) that an unknown person can claim to have proved an important result and be taken seriously, but if a similarly obscure mathematician had released 1000 pages of mathematics written in the style of Mochizuki’s papers, they would have been immediately dismissed. Finally, in contrast to the first two points, there are people willing to come out publicly and proclaim that all is well, and that the doubters just haven’t put in the necessary work to understand the foundations of inter-universal geometry. I’m not interested in speculating about the reasons they might be doing so. But the idea that several hundred hours at least would be required even to scratch the beginnings of the theory is either utter rubbish, or so far beyond the usual experience of how things work that it would be unique not only in mathematics, but in all of science itself.

So where to from here? There are a number of possibilities. One is that someone who examines the papers in depth is able to grasp a key idea, come up with a major simplification, and transform the subject by making it accessible. This was the dream scenario after the release of the paper, but it becomes less and less likely by the day (and year). But it is still possible that this could happen. The flip side of this is that someone could find a serious error, which would also resolve the situation in the opposite way. A third possibility is that we have (roughly) the status quo: no coup de grâce is found to kill off the approach, but at the same time the consensus remains that people can’t understand the key ideas. (I should say that whether the papers are accepted or not in a journal is pretty much irrelevant here; it’s not good enough for people to attest that they have read the argument and it is fine, someone has to be able to explain it.) In this case, the mathematical community moves on and then, whether it be a year, a decade, or a century, when someone ultimately does prove ABC, one can go back and compare to see if (in the end) the ideas were really there after all.