Polymath Proposal: 4-folds of Mumford’s type

Persiflage 2021-08-24

Summary:

Let \(A/K\) be an abelian variety of dimension \(g\) over a number field. If \(g \not\equiv 0 \bmod 4\) and \(\mathrm{End}(A/\mathbf{C}) = \mathbf{Z}\), then Serre proved that the Galois representations associated to \(A\) have open image in \(\mathrm{GSp}_{2g}(\mathbf{Z}_p)\). The result … Continue reading

Link:

https://www.galoisrepresentations.com/2021/08/24/polymath-proposal-4-folds-of-mumfords-type/

From feeds:

Online Mathematical Communication » Persiflage

Tags:

ariel

Authors:

Persiflage

Date tagged:

08/24/2021, 21:12

Date published:

08/24/2021, 18:55