Favorite Theorems: Random Oracles
Computational Complexity 2024-08-14
This months favorite theorem is a circuit result that implies the polynomial-time hierarchy is infinite relative to a random oracle, answering an open question that goes back to the 80's.
Johan Håstad, Benjamin Rossman, Rocco A. Servedio and Li-Yang Tan
The authors show how to separate depth d from depth d+1 circuits for random inputs. As a corollary, the polynomial hierarchy is infinite with a random oracle, which means that if we choose an oracle R at random, with probability one, the k+1-st level of the polynomial-time hierarchy relative to R is different than the k-th level relative to R.
Why should we care about random oracles? By the Kolmogorov zero-one law, every complexity statement holds with probability zero or probability one with a random oracle, so for every statement either it or its negation holds with probability one. And since the countable intersection of measure-one sets is measure one, every complexity statement true relative to a random oracle are all simultaneously true relative to a random oracle, a kind of consistent world. With a random oracle, we have full derandomization, like BPP = P, AM = NP and PH in \(\oplus\mathrm{P}\). We have separations like P ≠ UP ≠ NP. We have results like NP doesn't have measure zero and SAT solutions can be found with non-adaptive queries to an NP oracle. And now we have that the PH is infinite simultaneously with all these other results.
More details on this paper from a post I wrote back in 2015.