Terawatt-Scale Photovoltaics
Azimuth 2019-08-20
Here’s a cool paper which seems to be freely available:
• Nancy M. Haegel et al., Terawatt-scale photovoltaics: transform global energy, Science 364 (2019), 836–838.
Important topic! Here’s the abstract:
Solar energy has the potential to play a central role in the future global energy system because of the scale of the solar resource, its predictability, and its ubiquitous nature. Global installed solar photovoltaic (PV) capacity exceeded 500 GW at the end of 2018, and an estimated additional 500 GW of PV capacity is projected to be installed by 2022–2023, bringing us into the era of TW-scale PV. Given the speed of change in the PV industry, both in terms of continued dramatic cost decreases and manufacturing-scale increases, the growth toward TW-scale PV has caught many observers, including many of us (1), by surprise. Two years ago, we focused on the challenges of achieving 3 to 10 TW of PV by 2030. Here, we envision a future with ∼10 TW of PV by 2030 and 30 to 70 TW by 2050, providing a majority of global energy. PV would be not just a key contributor to electricity generation but also a central contributor to all segments of the global energy system. We discuss ramifications and challenges for complementary technologies (e.g., energy storage, power to gas/liquid fuels/chemicals, grid integration, and multiple sector electrification) and summarize what is needed in research in PV performance, reliability, manufacturing, and recycling.
Of course, increased energy storage is needed to take advantage of solar power. Let’s see what they say about that:
Energy storage
At high penetration, increased PV installation is synergistic with increased storage. Tesla recently installed a 100-MW battery in South Australia and in the first 6 months recovered 14% of the capital cost. California is also setting aggressive targets for storage. The price of lithium-ion batteries has decreased by more than 80% in the past 8 years, and improvements are expected to continue through a combination of technological advances and increased manufacturing capacity. To achieve the U.S. Department of Energy target price of U.S. $150/kWh for automotive batteries capable of charging within 15 minutes, research should explore materials with higher energy density to further reduce costs, focusing on nickel-rich, critical-materials–free cathodes and advanced anodes for lithium-ion systems. With further research and cost reduction, flow batteries and sodium-ion and multivalent-ion or conversion systems could also hold the promise of long-term competitors to lithium ion.
An additional approach to battery-based storage is pumped-storage hydropower (pumped hydro). Recent research indicates that there is a substantial technical potential for untapped off-river (closed-loop) pumped hydro and other forms of gravity storage in many parts of the world (9, 10). Pumped hydro has the advantage of being able to provide short-term responsiveness and diurnal-scale storage potentially at low cost.
The biggest challenge may be to meet energy requirements during the winter at high latitudes. However, wind power tends to be more abundant in many of these locations, whereas most of the world’s population lives closer to the equator. Economic development as well as population growth may be dominated by countries within 35° of the equator in the coming decades.