Forget the Higgs, neutrinos may be the key to breaking the Standard Model
Ars Technica » Scientific Method 2014-04-30
Some physicists are surprised that two relatively recent discoveries in their field have captured so much widespread attention: cosmic inflation, the ballooning expansion of the baby universe, and the Higgs boson, which endows other particles with mass. These are heady and interesting concepts, but, in one sense, what's new about them is downright boring.
These discoveries suggest that so far, our prevailing theories governing large and small—the Big Bang and the Standard Model of subatomic particles and forces—are accurate, good to go. But both cosmic inflation and the Higgs boson fall short of unifying these phenomena and explaining the deepest cosmic questions. “The Standard Model, as it stands, has no good explanation for why the Universe has anything in it at all,” says Mark Messier, physics professor at Indiana University and spokesman for an under-construction particle detector.
To go beyond the models we already have, beyond the confines of the Standard Model, we need some results that we don’t foresee. And when it comes to unexpected results, we expect them from one entity: neutrinos. These particles are abundant, ineffably light, and very weird, but they consistently deliver.