(1) The misplaced burden of proof, and (2) selection bias: Two reasons for the persistence of hype in tech and science reporting

Statistical Modeling, Causal Inference, and Social Science 2020-09-23

Palko points to this post by Jeffrey Funk, “What’s Behind Technological Hype?”

I’ll quote extensively from Funk’s post, but first I want to make a more general point about the burden of proof in scientific discussions.

What happens is that a researcher or team of researchers makes a strong claim that is not well supported by evidence. But the claim gets published, perhaps in a prestigious journal such as the Journal of Theoretical Biology or PNAS or Lancet or the American Economic Review or Psychological Science. The authors may well be completely sincere in their belief that they’ve demonstrated something important, but their data don’t really back up their claim. Later on, the claims are criticized: outside researchers look carefully at the published material and point out that the evidence isn’t really there. Fine. The problem arises when the critics are then held to a higher standard: it’s not enough for them to point out that the original paper did not offer strong evidence for its striking claim; the critics are asked to (impossibly) prove that the claimed effect cannot possibly be true.

It’s a sort of Cheshire Cat phenomenon: Original researchers propose a striking and noteworthy (i.e., not completely obvious) idea, which is published and given major publicity based on purportedly strong statistical and experimental evidence. The strong evidence turns out not to be there, but—like the smile of the Cheshire cat—the claim remains even after the evidence has disappeared.

This is related to what we’ve called the “research incumbency advantage” (the widespread attitude that a published claim is considered true unless conclusively proved otherwise), and the “time-reversal heuristic” (my suggestion to suppose that the counter-argument or failed replication came first, with the splashy study following after).

Now to Funk’s post on technological hype:

Start-up losses are mounting and innovation is slowing. . . . The large losses are easily explained: extreme levels of hype about new technologies, and too many investors willing to believe it. . . . The media, with help from the financial sector, supports the hype, offering logical reasons for the [stock] price increases and creating a narrative that encourages still more increases. . . .

The [recent] narrative began with Ray Kurzweil’s 2005 book, The Singularity is Near, and has expanded with bestsellers such as Erik Brynjolfsson and Andrew McAfee’s Race Against the Machine (2012), Peter Diamandis and Steven Kotler’s Abundance (2012), and Martin Ford’s The Rise of the Robots (2015). Supported by soaring venture capitalist investments and a rising stock market, the world described in these books is one of rapid and disruptive technological change that will soon lead to great prosperity and perhaps massive unemployment. The media has amplified this message even as evidence of rising productivity or unemployment has yet to emerge.

Here I [Funk] discuss economic data showing that many highly touted new technologies are seriously over-hyped, a phenomenon driven by online news and the professional incentives of those involved in promoting innovation and entrepreneurship. This hype comes at a cost—not only in the form of record losses by start-ups, but in their inability to pursue alternative designs and find more productive and profitable opportunities . . .

These indicators are widely ignored, in part because we are distracted by information appearing to carry a more positive message. The number of patent applications and patent awards has increased about sixfold since 1984, and over the past 10 years the number of scientific papers has doubled. The stock market has tripled in value since 2008. Investments by US venture capitalists have risen about sixfold since 2001 . . . Such upward trends are often used to hype the economic potential of new technologies, but in fact rising patent activity, scientific publication, stock market value, and venture capital investment are all poor indicators of innovativeness.

One reason they are poor indicators is that they don’t consider the record-high losses for start-ups, the lack of innovations for large sectors of the economy such as housing, and the small range of technologies being successfully commercialized by either start-ups or existing firms. . . .

Funk then talks about the sources of hype:

For more recent technologies such as artificial intelligence, a major source of hype is the tendency of tech analysts to extrapolate from one or two highly valued yet unprofitable start-ups to total disruptions of entire sectors. For example, in its report Artificial Intelligence: The Next Digital Frontier? the McKinsey Global Institute extrapolated from the purported success of two early AI start-ups, DeepMind and Nest Labs, both subsidiaries of Alphabet (Google’s parent company), to a 10% reduction in total energy usage in the United Kingdom and other countries. However, other evidence for these purported energy reductions in data centers and homes are nowhere to be found, and the start-ups are currently a long way from profitability. Alphabet reported losses of approximately $580 million in 2017 for DeepMind and $569 million in 2018 for Nest Labs. . . .

Hype and its amplification come from many quarters: not only the financial community but also entrepreneurs, venture capitalists, consultants, scientists, engineers, and universities. . . .

Ya think??

Funk continues:

Online tech-hyping articles are now driven by the same dynamics as fake news. Journalists, bloggers, and websites prioritize page views and therefore say more positive things to attract viewers, while social media works as an amplifier. Journalists become “content marketers,” often hired by start-ups and universities to promote new technologies. Entrepreneurs, venture capitalists, university public relation offices, entrepreneurship programs, and professors who benefit from the promotion of new technologies all end up sharing an interest in increasing the level of hype. . . .

And this connects to the point I made at the beginning of this post. Once a hyped idea gets out there, it’s the default, and merely removing the evidence in favor is not enough. Mars One, Hyperloop, etc.: sure, eventually they fade, but in the meantime they suck up media attention and $$$, in part because they become the default, and the burden of proof is on the skeptics.

Selection bias in tech and science reporting

One other thing: the remark that journalists etc. “say more positive things to attract viewers” reminds me of what I’ve written about selection bias in science reporting (see also here). Lots of science reporters want to do the right thing, and, yes, they want clicks and they want to report positive stories—I too would be much more interested to read or write about a cure for cancer than about some bogus bit of noise mining—and these reporters will steer away from junk science. But here’s where the selection bias comes in: other, less savvy or selective or scrupulous reporters will jump in and hype the junk. So, with rare exceptions (some studies are so bad and so juicy that they just beg to be publicly debunked), the bad studies get promoted by the clueless journalists, and the negative reports don’t get written.

My point here is that selection bias can give us a sort of Gresham effect, even without any journalists knowingly hyping anything of low quality.