Who wants to learn R? Sharing DataCamp’s user stats and insights.

R-bloggers 2014-06-16

(This article was first published on DataCamp Blog » R, and kindly contributed to R-bloggers)

When building an online education start-up for R the number one criterion to meet is the following: identify an increasing interest in learning R online. Once this box is checked, it is time to start thinking of the second most important criterion: establish a teaching approach that makes people so excited that they keep coming back to learn more, thereby turning them, slowly but surely, into black-belt R masters.

In order to investigate how DataCamp is performing on both criteria, we decided to analyze our user data for February in more detail, and to open up and share the results via this (comprehensive) Slidify presentation. We put some effort in the visualizations as well, so all results are prettified via rMaps, rCharts and googleVis. (For the curious souls among us, the presentation also gives a unique view on the status of DataCamp back then.)

Screenshot 2014-05-01 23.53.22

For DataCamp, February is one of the most interesting months so-far in terms of user data, as we added two new and free online interactive courses to our curriculum: Data Analysis and Statistical Inference and Introduction to Computational Finance. Courses that are/were also used as interactive R complements to the like-named Coursera courses. In February we welcomed over 14,000 new R enthusiasts, from a total of 163 countries. Our servers handled peak traffic of 1,000 requests per minute, and hundreds of concurrent users. Other insights that you will find in the presentation are:

  • Number of chapters started and finished by course
  • Geographical distribution of the DataCamp user base
  • Spillover effect across courses

Make sure to have a look, and if you want more information send your requests to info@datacamp.com.

To leave a comment for the author, please follow the link and comment on his blog: DataCamp Blog » R.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...