GLMNet in Python: Generalized Linear Models

R-bloggers 2024-11-19

[This article was first published on T. Moudiki's Webpage - R, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

During the past few weeks, I’ve been adapting a Python version of the (seemingly abandoned?) official Stanford GLMNet package. Don’t try to build a programming interface on it yet, as it’s still “moving”.

GLMNet implements the entire lasso or elastic-net regularization path for linear regression, logistic and multinomial regression models, poisson regression and the cox model. My implementation is faithful to the R Fortran-based one, but:

  • uses numpy instead of scipy
  • uses scikit-learn style, with a main class GLMNet having methods fit and predict

If (like me) you’re a fond a GLMNet and scikit-learn style, you may love this package. Here, I illustrate usage of this “new” package with Techtonique ecosystem, with nnetsauce and mlsauce.

!pip install git+https://github.com/Techtonique/mlsauce.git --verbose --upgrade --no-cache-dir!pip install git+https://github.com/thierrymoudiki/glmnetforpython.git --verbose --upgrade --no-cache-dir

1 – GLMNet

1 – 1 GLMNet Classification

import nnetsauce as nsimport mlsauce as msimport numpy as npimport glmnetforpython as glmnetfrom sklearn.datasets import load_breast_cancer, load_iris, load_winefrom sklearn.model_selection import train_test_splitfrom time import timedatasets = [load_iris, load_breast_cancer, load_wine]for dataset in datasets:    print(f"\n\n dataset: {dataset.__name__} -------------------")    X, y = dataset(return_X_y=True)    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123)    clf = glmnet.GLMNet(family="multinomial")    print(clf.get_params())    start = time()    clf.fit(X_train, y_train)    print(f"elapsed: {time() - start}")    #clf.print()    #print(clf.score(X_test, y_test))    preds = clf.predict(X_test, ptype="class")    print(preds)    print("accuracy: ", np.mean(preds == y_test))     dataset: load_iris -------------------    {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'multinomial', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}    elapsed: 0.5259675979614258    [1. 2. 2. 1. 0. 2. 1. 0. 0. 1. 2. 0. 1. 2. 2. 2. 0. 0. 1. 0. 0. 1. 0. 2.     0. 0. 0. 2. 2. 0.]    accuracy:  0.9666666666666667             dataset: load_breast_cancer -------------------    {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'multinomial', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}    elapsed: 1.3695988655090332    [1. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1. 0. 0. 1. 0. 1. 1. 1. 1. 1. 0. 1. 1. 1.     1. 0. 0. 1. 0. 1. 0. 1. 1. 1. 0. 1. 1. 1. 1. 0. 0. 1. 0. 1. 0. 1. 0. 0.     1. 0. 0. 0. 1. 1. 1. 0. 1. 0. 0. 1. 0. 1. 1. 1. 1. 0. 1. 1. 1. 1. 1. 1.     1. 1. 0. 1. 1. 0. 0. 0. 1. 0. 0. 1. 1. 1. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1.     1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.]    accuracy:  0.956140350877193             dataset: load_wine -------------------    {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'multinomial', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}    elapsed: 0.1249077320098877    [2. 1. 2. 1. 1. 2. 0. 2. 2. 1. 2. 2. 2. 0. 0. 2. 1. 1. 0. 1. 1. 2. 2. 2.     1. 2. 2. 1. 0. 0. 0. 0. 2. 1. 2. 1.]    accuracy:  0.9722222222222222

1 – 2 GLMNet Regression

import numpy as npimport osimport sysimport glmnetforpython as glmnetfrom sklearn.datasets import load_diabetes, fetch_california_housingfrom sklearn.model_selection import train_test_splitfrom time import timedatasets = [load_diabetes, fetch_california_housing]for dataset in datasets:    print(f"\n\n dataset: {dataset.__name__} -------------------")    X, y = dataset(return_X_y=True)    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)    regr = glmnet.GLMNet()    print(regr.get_params())    start = time()    regr.fit(X_train, y_train)    print(f"elapsed: {time() - start}")    regr.print()    print(regr.predict(X_test, s=0.1))    print(regr.predict(X_test, s=np.asarray([0.1, 0.5])))    print(regr.predict(X_test, s=0.5))    start = time()    res_cvglmnet = regr.cvglmnet(X_train, y_train)    print(f"elapsed: {time() - start}")    print("\n best lambda: ", res_cvglmnet.lambda_min)    print("\n best lambda std. dev: ", res_cvglmnet.lambda_1se)    print("\n best coef: ", res_cvglmnet.best_coef)    print("\n best GLMNet: ", res_cvglmnet.cvfit)     dataset: load_diabetes -------------------    {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'gaussian', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}    elapsed: 0.003544330596923828     df  %dev  lambdau        0  0.000000  0.000000  44.034491    1  1.000000  0.056410  40.122588    2  2.000000  0.118800  36.558208    3  2.000000  0.173050  33.310478    4  2.000000  0.218089  30.351267    5  2.000000  0.255485  27.654944    6  2.000000  0.286528  25.198155    7  2.000000  0.312300  22.959620    8  2.000000  0.333697  20.919951    9  3.000000  0.354121  19.061480    10  4.000000  0.373003  17.368111    11  4.000000  0.390322  15.825176    12  4.000000  0.404704  14.419311    13  4.000000  0.416644  13.138339    14  4.000000  0.426556  11.971165    15  4.000000  0.434786  10.907680    16  4.000000  0.441619  9.938671    17  5.000000  0.447381  9.055747    18  5.000000  0.452319  8.251260    19  5.000000  0.456422  7.518240    20  5.000000  0.459828  6.850341    21  5.000000  0.462655  6.241775    22  5.000000  0.465003  5.687273    23  6.000000  0.468916  5.182032    24  6.000000  0.472756  4.721674    25  6.000000  0.475938  4.302214    26  6.000000  0.478579  3.920017    27  6.000000  0.480772  3.571773    28  7.000000  0.482661  3.254467    29  7.000000  0.485063  2.965349    30  7.000000  0.487080  2.701916    31  7.000000  0.488751  2.461885    32  7.000000  0.490137  2.243178    33  7.000000  0.491289  2.043900    34  7.000000  0.492244  1.862326    35  7.000000  0.493038  1.696882    36  7.000000  0.493697  1.546135    37  8.000000  0.494444  1.408781    38  8.000000  0.495256  1.283629    39  8.000000  0.495927  1.169595    40  8.000000  0.496489  1.065691    41  8.000000  0.496952  0.971018    42  8.000000  0.497335  0.884756    43  8.000000  0.497659  0.806156    44  8.000000  0.497924  0.734540    45  8.000000  0.498143  0.669285    46  8.000000  0.498329  0.609828    47  8.000000  0.498481  0.555652    48  8.000000  0.498610  0.506290    49  8.000000  0.498715  0.461312    50  8.000000  0.498805  0.420331    51  8.000000  0.498877  0.382990    52  8.000000  0.498939  0.348966    53  8.000000  0.498989  0.317965    54  8.000000  0.499032  0.289718    55  9.000000  0.499069  0.263980    56  9.000000  0.499392  0.240529    57  9.000000  0.499741  0.219161    58  9.000000  0.500032  0.199691    59  9.000000  0.500272  0.181951    60  9.000000  0.500476  0.165787    61  9.000000  0.500646  0.151059    62  9.000000  0.500787  0.137639    63  8.000000  0.500861  0.125412    64  9.000000  0.500891  0.114271    65  9.000000  0.500921  0.104119    66  9.000000  0.500946  0.094869    67  9.000000  0.500966  0.086441    68  10.000000  0.500985  0.078762    69  10.000000  0.501074  0.071765    70  10.000000  0.501148  0.065390    71  10.000000  0.501208  0.059581    72  10.000000  0.501261  0.054288    73  10.000000  0.501303  0.049465    74  10.000000  0.501340  0.045071    75  10.000000  0.501371  0.041067    76  10.000000  0.501396  0.037418    77  10.000000  0.501418  0.034094    78  10.000000  0.501436  0.031065    79  10.000000  0.501452  0.028306    80  10.000000  0.501466  0.025791    81  10.000000  0.501477  0.023500    82  10.000000  0.501486  0.021412    83  10.000000  0.501495  0.019510    84  10.000000  0.501501  0.017777    85  10.000000  0.501507  0.016198    86  10.000000  0.501512  0.014759    87  10.000000  0.501517  0.013447    [161.26225363 153.40808479 226.88078039 163.480388   158.15906743     138.70495293 252.60833458 107.20179977 107.04120812 111.4621737     123.02831339 182.46487521 161.8259466  202.19109973 222.70276584     172.29337663 108.23998068 144.9482381  176.11555866 191.67293859     163.44023323 231.8947646  140.21508949  75.13660039 129.39763652     188.26182192 100.80880331 101.63988186 157.52887579 185.93073996      85.10969035 238.43828572 208.13649047 209.71355938 198.52425274      95.48735993  93.58588193  98.38410955 225.11428814 101.19808037     193.69596077  81.44887372 102.8093431  146.00065311 110.88937281     215.06701174  79.87947637  77.58243533 101.06682798 217.30259906      70.16241913 116.23582088 177.21944649 195.88268542 138.92178841     198.65554716 219.68568399 169.97366232 192.47857773 189.04428441     138.71921407 121.43624221 233.40434688 202.68154217 190.88486154      42.03060013  62.01800127 159.28979811 126.65978845  86.64871155     136.58228326  76.93411617 141.41235614 199.19748035 120.79645249     173.18692022 146.96993898 139.31000819  99.86313284  83.63232759      61.45995805 159.5304213  120.28229729 225.93625573 286.05353932     165.66169186 197.95421215  70.40035793 139.89076625]    [[161.26225363 160.79263694]     [153.40808479 150.6281287 ]     [226.88078039 225.5710481 ]     [163.480388   161.80700641]     [158.15906743 157.71369432]     [138.70495293 144.58961694]     [252.60833458 250.39569639]     [107.20179977 110.67344587]     [107.04120812 111.21584102]     [111.4621737  107.93161795]     [123.02831339 122.34617434]     [182.46487521 180.55849115]     [161.8259466  161.4535835 ]     [202.19109973 200.49417412]     [222.70276584 229.60354304]     [172.29337663 170.57681745]     [108.23998068 109.09703513]     [144.9482381  143.71605666]     [176.11555866 177.00946867]     [191.67293859 194.23710327]     [163.44023323 161.7697504 ]     [231.8947646  229.71549579]     [140.21508949 140.591871  ]     [ 75.13660039  78.02802694]     [129.39763652 129.5053364 ]     [188.26182192 186.58248135]     [100.80880331 102.6960668 ]     [101.63988186 104.20365368]     [157.52887579 156.12372213]     [185.93073996 187.20901614]     [ 85.10969035  89.82145958]     [238.43828572 237.95082988]     [208.13649047 207.73770948]     [209.71355938 209.32169425]     [198.52425274 197.67298512]     [ 95.48735993  96.07154965]     [ 93.58588193  95.09805607]     [ 98.38410955  97.25266832]     [225.11428814 220.52646948]     [101.19808037 101.27641956]     [193.69596077 194.77086843]     [ 81.44887372  81.25151312]     [102.8093431  102.64887002]     [146.00065311 144.94838244]     [110.88937281 110.25258101]     [215.06701174 213.51721996]     [ 79.87947637  79.10616278]     [ 77.58243533  81.51256193]     [101.06682798 103.20741885]     [217.30259906 216.7643487 ]     [ 70.16241913  72.0598882 ]     [116.23582088 119.05445336]     [177.21944649 178.45613256]     [195.88268542 197.31526195]     [138.92178841 137.70888526]     [198.65554716 200.13140539]     [219.68568399 218.50018565]     [169.97366232 169.49700466]     [192.47857773 188.32727388]     [189.04428441 186.73052546]     [138.71921407 140.07357784]     [121.43624221 121.14922477]     [233.40434688 231.63901622]     [202.68154217 201.3077663 ]     [190.88486154 189.74608267]     [ 42.03060013  46.44945536]     [ 62.01800127  63.00668405]     [159.28979811 158.37093056]     [126.65978845 126.26280796]     [ 86.64871155  87.59938665]     [136.58228326 136.23598795]     [ 76.93411617  80.10973443]     [141.41235614 140.69343212]     [199.19748035 196.9680135 ]     [120.79645249 119.32968814]     [173.18692022 170.83211938]     [146.96993898 146.07744866]     [139.31000819 139.45758571]     [ 99.86313284  99.37633812]     [ 83.63232759  85.05298366]     [ 61.45995805  64.04582025]     [159.5304213  159.08368556]     [120.28229729 120.78108123]     [225.93625573 224.25244938]     [286.05353932 287.72165668]     [165.66169186 167.91861665]     [197.95421215 194.94689188]     [ 70.40035793  71.35611103]     [139.89076625 139.15500257]]    [160.79263694 150.6281287  225.5710481  161.80700641 157.71369432     144.58961694 250.39569639 110.67344587 111.21584102 107.93161795     122.34617434 180.55849115 161.4535835  200.49417412 229.60354304     170.57681745 109.09703513 143.71605666 177.00946867 194.23710327     161.7697504  229.71549579 140.591871    78.02802694 129.5053364     186.58248135 102.6960668  104.20365368 156.12372213 187.20901614      89.82145958 237.95082988 207.73770948 209.32169425 197.67298512      96.07154965  95.09805607  97.25266832 220.52646948 101.27641956     194.77086843  81.25151312 102.64887002 144.94838244 110.25258101     213.51721996  79.10616278  81.51256193 103.20741885 216.7643487      72.0598882  119.05445336 178.45613256 197.31526195 137.70888526     200.13140539 218.50018565 169.49700466 188.32727388 186.73052546     140.07357784 121.14922477 231.63901622 201.3077663  189.74608267      46.44945536  63.00668405 158.37093056 126.26280796  87.59938665     136.23598795  80.10973443 140.69343212 196.9680135  119.32968814     170.83211938 146.07744866 139.45758571  99.37633812  85.05298366      64.04582025 159.08368556 120.78108123 224.25244938 287.72165668     167.91861665 194.94689188  71.35611103 139.15500257]    elapsed: 0.021459341049194336         best lambda:  1.2836287759411216         best lambda std. dev:  7.518240463343744         best coef:  [ 152.36008914    0.            0.          478.69081702  163.09825002        0.            0.         -127.63723154    0.          383.45857834       14.02212484]         best GLMNet:  {'lambdau': array([4.40344909e+01, 4.01225881e+01, 3.65582080e+01, 3.33104775e+01,           3.03512665e+01, 2.76549436e+01, 2.51981547e+01, 2.29596201e+01,           2.09199507e+01, 1.90614799e+01, 1.73681106e+01, 1.58251755e+01,           1.44193105e+01, 1.31383387e+01, 1.19711649e+01, 1.09076796e+01,           9.93867143e+00, 9.05574725e+00, 8.25125963e+00, 7.51824046e+00,           6.85034070e+00, 6.24177531e+00, 5.68727320e+00, 5.18203152e+00,           4.72167412e+00, 4.30221361e+00, 3.92001681e+00, 3.57177332e+00,           3.25446682e+00, 2.96534896e+00, 2.70191553e+00, 2.46188480e+00,           2.24317774e+00, 2.04390001e+00, 1.86232557e+00, 1.69688170e+00,           1.54613540e+00, 1.40878100e+00, 1.28362878e+00, 1.16959473e+00,           1.06569116e+00, 9.71018095e-01, 8.84755524e-01, 8.06156282e-01,           7.34539579e-01, 6.69285108e-01, 6.09827663e-01, 5.55652254e-01,           5.06289640e-01, 4.61312263e-01, 4.20330553e-01, 3.82989545e-01,           3.48965810e-01, 3.17964649e-01, 2.89717546e-01, 2.63979838e-01,           2.40528596e-01, 2.19160699e-01, 1.99691066e-01, 1.81951062e-01,           1.65787032e-01, 1.51058969e-01, 1.37639306e-01, 1.25411810e-01,           1.14270570e-01, 1.04119088e-01, 9.48694348e-02, 8.64414957e-02,           7.87622714e-02, 7.17652483e-02, 6.53898214e-02, 5.95807699e-02,           5.42877785e-02, 4.94650019e-02, 4.50706675e-02, 4.10667136e-02,           3.74184599e-02, 3.40943071e-02, 3.10654628e-02, 2.83056927e-02,           2.57910930e-02, 2.34998834e-02, 2.14122185e-02, 1.95100160e-02,           1.77768000e-02, 1.61975581e-02, 1.47586116e-02, 1.34474973e-02]), 'cvm': array([5849.67888044, 5588.13049574, 5237.68523549, 4913.35994927,           4643.97138541, 4420.18846237, 4234.28760402, 4079.94561166,           3953.4266667 , 3843.20670735, 3742.11421001, 3650.89110401,           3567.12685974, 3496.28344973, 3438.17453542, 3390.16054415,           3350.74498364, 3318.09382761, 3291.04560008, 3268.40981966,           3249.56159518, 3235.42351215, 3224.36750318, 3210.81451391,           3195.03055142, 3182.43023807, 3170.41713324, 3160.98874011,           3153.61834888, 3147.36615655, 3140.58675366, 3134.53307657,           3126.70250974, 3121.53432349, 3118.77235699, 3117.224526  ,           3116.5750121 , 3116.07320448, 3115.6035719 , 3115.63220558,           3116.16432467, 3116.61109199, 3116.30815949, 3116.14506076,           3116.23491199, 3116.51194066, 3117.07327289, 3117.66910598,           3118.28730793, 3118.94059329, 3119.58984965, 3120.29866814,           3122.45940284, 3124.65303008, 3126.52180218, 3127.45737901,           3128.23057335, 3128.3594194 , 3128.33377776, 3127.73013801,           3127.46559483, 3126.80867588, 3125.85726821, 3125.28303452,           3124.84520112, 3124.63312595, 3124.43410757, 3124.32847712,           3124.23076662, 3124.18911129, 3124.06737071, 3124.09365713,           3124.14154577, 3124.18800616, 3124.32158173, 3124.43107133,           3124.48930905, 3124.54190509, 3124.61269842, 3124.64999794,           3124.63934723, 3124.60634785, 3124.59003554, 3124.58808782,           3124.56949869, 3124.55185597, 3124.55864693, 3124.55978034]), 'cvsd': array([259.52792143, 248.75823371, 221.46767784, 196.31833834,           177.94632187, 165.15950248, 156.81416851, 151.85850454,           149.5689093 , 150.20248582, 149.67202475, 146.56506657,           143.00853209, 140.60041047, 138.55782035, 136.8510055 ,           135.41484385, 134.23857211, 133.26532408, 132.2940369 ,           131.49659758, 130.83158262, 130.54053885, 130.02800433,           129.85450444, 130.97322891, 133.21473862, 135.58414859,           138.00196431, 140.50827777, 143.37107165, 145.89654308,           148.34884887, 150.24805302, 152.2145693 , 154.10961339,           155.93288424, 157.76716921, 159.63011092, 161.33532503,           162.88557649, 164.32062807, 165.470281  , 166.54562968,           167.54645567, 168.49635186, 169.37581278, 170.17848841,           170.94950123, 171.65270522, 172.31624765, 172.88013735,           172.80109307, 172.76638875, 172.75274784, 173.02037182,           173.2886591 , 173.4866617 , 173.69450463, 173.79827944,           173.43628185, 172.75611616, 172.21856656, 171.70858949,           171.08574087, 170.55631258, 170.09854581, 169.68475556,           169.32167531, 168.99748594, 168.74915863, 168.50227099,           168.28568613, 168.08332938, 167.91550145, 167.77407306,           167.65195892, 167.54167529, 167.44368359, 167.34059865,           167.23770408, 167.14209302, 167.05532325, 166.97480747,           166.90199522, 166.83948792, 166.77940688, 166.7253628 ]), 'cvup': array([6109.20680187, 5836.88872945, 5459.15291333, 5109.67828761,           4821.91770728, 4585.34796485, 4391.10177253, 4231.8041162 ,           4102.995576  , 3993.40919317, 3891.78623476, 3797.45617058,           3710.13539183, 3636.8838602 , 3576.73235577, 3527.01154965,           3486.15982749, 3452.33239972, 3424.31092416, 3400.70385656,           3381.05819276, 3366.25509477, 3354.90804202, 3340.84251824,           3324.88505586, 3313.40346698, 3303.63187186, 3296.5728887 ,           3291.62031319, 3287.87443432, 3283.95782531, 3280.42961965,           3275.05135861, 3271.7823765 , 3270.9869263 , 3271.3341394 ,           3272.50789634, 3273.84037369, 3275.23368282, 3276.96753061,           3279.04990117, 3280.93172006, 3281.77844048, 3282.69069045,           3283.78136765, 3285.00829252, 3286.44908566, 3287.84759439,           3289.23680916, 3290.59329851, 3291.9060973 , 3293.17880549,           3295.26049591, 3297.41941883, 3299.27455002, 3300.47775083,           3301.51923245, 3301.8460811 , 3302.02828239, 3301.52841745,           3300.90187668, 3299.56479204, 3298.07583477, 3296.99162401,           3295.93094198, 3295.18943853, 3294.53265338, 3294.01323268,           3293.55244193, 3293.18659723, 3292.81652934, 3292.59592812,           3292.4272319 , 3292.27133554, 3292.23708318, 3292.2051444 ,           3292.14126797, 3292.08358038, 3292.05638201, 3291.99059659,           3291.87705131, 3291.74844088, 3291.64535879, 3291.56289529,           3291.47149391, 3291.39134388, 3291.33805381, 3291.28514314]), 'cvlo': array([5590.15095901, 5339.37226204, 5016.21755765, 4717.04161093,           4466.02506353, 4255.0289599 , 4077.47343551, 3928.08710712,           3803.85775741, 3693.00422154, 3592.44218526, 3504.32603744,           3424.11832765, 3355.68303927, 3299.61671507, 3253.30953865,           3215.33013978, 3183.85525549, 3157.78027601, 3136.11578276,           3118.0649976 , 3104.59192953, 3093.82696433, 3080.78650958,           3065.17604697, 3051.45700916, 3037.20239462, 3025.40459152,           3015.61638456, 3006.85787878, 2997.21568202, 2988.63653348,           2978.35366087, 2971.28627047, 2966.55778769, 2963.11491261,           2960.64212786, 2958.30603527, 2955.97346098, 2954.29688055,           2953.27874818, 2952.29046392, 2950.83787849, 2949.59943108,           2948.68845632, 2948.0155888 , 2947.69746011, 2947.49061756,           2947.3378067 , 2947.28788807, 2947.27360201, 2947.41853078,           2949.65830978, 2951.88664133, 2953.76905433, 2954.43700719,           2954.94191425, 2954.87275769, 2954.63927313, 2953.93185857,           2954.02931298, 2954.05255971, 2953.63870164, 2953.57444503,           2953.75946025, 2954.07681336, 2954.33556176, 2954.64372156,           2954.90909131, 2955.19162535, 2955.31821208, 2955.59138614,           2955.85585964, 2956.10467679, 2956.40608028, 2956.65699827,           2956.83735013, 2957.0002298 , 2957.16901484, 2957.30939929,           2957.40164314, 2957.46425483, 2957.5347123 , 2957.61328035,           2957.66750348, 2957.71236805, 2957.77924005, 2957.83441753]), 'nzero': array([ 0,  1,  2,  2,  2,  2,  2,  2,  2,  3,  4,  4,  4,  4,  4,  4,  4,            5,  5,  5,  5,  5,  5,  6,  6,  6,  6,  6,  7,  7,  7,  7,  7,  7,            7,  7,  7,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,            8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9,  8,  9,  9,  9,  9,           10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,           10, 10, 10]), 'name': 'Mean-Squared Error', 'glmnet_fit': {'a0': array([152.42776204, 152.42566409, 152.43276797, 152.44073179,           152.44798822, 152.45459811, 152.46062269, 152.46611206,           152.47111377, 152.47445162, 152.47048801, 152.45602272,           152.44285433, 152.43085578, 152.41992316, 152.40996176,           152.4008853 , 152.38972315, 152.37419946, 152.36008914,           152.3472322 , 152.33551743, 152.32484337, 152.31445325,           152.30457294, 152.29565898, 152.2875366 , 152.28013579,           152.27233919, 152.25527491, 152.23909998, 152.22445076,           152.2111053 , 152.19894546, 152.18786587, 152.17777057,           152.1685721 , 152.15730549, 152.14410824, 152.13217008,           152.12118064, 152.1112707 , 152.102268  , 152.09394524,           152.08646062, 152.07967323, 152.07337   , 152.06772299,           152.06248036, 152.05779897, 152.05344349, 152.04956603,           152.04594958, 152.04274165, 152.03974152, 152.03723678,           152.03770233, 152.03883229, 152.03986205, 152.04079072,           152.041649  , 152.04242696, 152.04313295, 152.04338785,           152.04364361, 152.04392876, 152.04419377, 152.0444226 ,           152.0447089 , 152.04530852, 152.04554794, 152.0457575 ,           152.04595716, 152.04613018, 152.04629475, 152.04644218,           152.04657382, 152.0466978 , 152.0468066 , 152.0469082 ,           152.04700243, 152.04708911, 152.04716156, 152.04723421,           152.04729311, 152.04735235, 152.04740486, 152.04745049]), 'beta': array([[ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00, -2.57050755e-01, -6.60326286e-01,            -9.78489254e-01, -1.26685258e+00, -1.53621534e+00,            -1.97998984e+00, -2.33787474e+00, -2.66018889e+00,            -2.95822820e+00, -3.22526923e+00, -3.47211745e+00,            -3.69568054e+00, -3.89802418e+00, -4.08448852e+00,            -4.25217821e+00, -4.40633136e+00, -4.54760761e+00,            -4.67674008e+00, -4.79098332e+00, -4.89877047e+00,            -4.99301452e+00, -5.08205906e+00, -5.16234069e+00,            -5.23446789e+00],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00, -1.49446624e+01,            -3.33086438e+01, -4.99701883e+01, -6.51519098e+01,            -7.89849273e+01, -9.14807107e+01, -1.02558316e+02,            -1.12553874e+02, -1.21673779e+02, -1.29983486e+02,            -1.37554982e+02, -1.44453847e+02, -1.50739836e+02,            -1.56467395e+02, -1.62068215e+02, -1.67199275e+02,            -1.71883535e+02, -1.76140004e+02, -1.80029098e+02,            -1.83575513e+02, -1.86794371e+02, -1.89737633e+02,            -1.92422931e+02, -1.94857087e+02, -1.97085482e+02,            -1.99105321e+02, -2.00956533e+02, -2.02633054e+02,            -2.04171528e+02, -2.05563237e+02, -2.06842288e+02,            -2.07997804e+02, -2.09060396e+02, -2.10339592e+02,            -2.11701852e+02, -2.12943164e+02, -2.14069597e+02,            -2.15101772e+02, -2.16040314e+02, -2.16894118e+02,            -2.17720672e+02, -2.18460918e+02, -2.19212695e+02,            -2.19879074e+02, -2.20478047e+02, -2.21040126e+02,            -2.21464981e+02, -2.21782875e+02, -2.22068384e+02,            -2.22333206e+02, -2.22569663e+02, -2.22788891e+02,            -2.22987204e+02, -2.23166444e+02, -2.23331996e+02,            -2.23480492e+02, -2.23617233e+02, -2.23742706e+02,            -2.23857470e+02, -2.23958401e+02, -2.24054259e+02,            -2.24137436e+02, -2.24216526e+02, -2.24287751e+02,            -2.24351589e+02],           [ 0.00000000e+00,  8.12690155e+01,  1.36371438e+02,             1.83441721e+02,  2.26329677e+02,  2.65424715e+02,             3.01029532e+02,  3.33471311e+02,  3.63031051e+02,             3.85363952e+02,  4.02298321e+02,  4.14560699e+02,             4.25779668e+02,  4.36001929e+02,  4.45316073e+02,             4.53802774e+02,  4.61535540e+02,  4.68218469e+02,             4.73667496e+02,  4.78690817e+02,  4.83267733e+02,             4.87438049e+02,  4.91237886e+02,  4.92787323e+02,             4.93507456e+02,  4.94238917e+02,  4.94904948e+02,             4.95511813e+02,  4.96218138e+02,  4.97513685e+02,             4.98767866e+02,  4.99952852e+02,  5.01034299e+02,             5.02019709e+02,  5.02917578e+02,  5.03735683e+02,             5.04481110e+02,  5.05182886e+02,  5.05982344e+02,             5.06697422e+02,  5.07366395e+02,  5.07959876e+02,             5.08496411e+02,  5.09003963e+02,  5.09450892e+02,             5.09852635e+02,  5.10237791e+02,  5.10572273e+02,             5.10893667e+02,  5.11168610e+02,  5.11436170e+02,             5.11660454e+02,  5.11883126e+02,  5.12064493e+02,             5.12249641e+02,  5.12397142e+02,  5.12110707e+02,             5.11537926e+02,  5.11015923e+02,  5.10547161e+02,             5.10111373e+02,  5.09717193e+02,  5.09360059e+02,             5.09062511e+02,  5.08773585e+02,  5.08352963e+02,             5.08021209e+02,  5.07729466e+02,  5.07439254e+02,             5.07147323e+02,  5.07002339e+02,  5.06877126e+02,             5.06755269e+02,  5.06652272e+02,  5.06552156e+02,             5.06463320e+02,  5.06384795e+02,  5.06309534e+02,             5.06244857e+02,  5.06183541e+02,  5.06126213e+02,             5.06073252e+02,  5.06031044e+02,  5.05986114e+02,             5.05952149e+02,  5.05915669e+02,  5.05883889e+02,             5.05856727e+02],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             1.70132045e+01,  3.85628559e+01,  5.85831519e+01,             7.68171853e+01,  9.34313567e+01,  1.08569571e+02,             1.22362948e+02,  1.34930959e+02,  1.45883461e+02,             1.54892818e+02,  1.63098250e+02,  1.70574758e+02,             1.77387073e+02,  1.83594201e+02,  1.91698488e+02,             1.99877350e+02,  2.07309626e+02,  2.14081739e+02,             2.20252235e+02,  2.25836131e+02,  2.30854142e+02,             2.35350216e+02,  2.39480301e+02,  2.43244261e+02,             2.46673858e+02,  2.49798780e+02,  2.52646093e+02,             2.55240458e+02,  2.58060407e+02,  2.61002208e+02,             2.63672892e+02,  2.66118970e+02,  2.68336072e+02,             2.70353151e+02,  2.72204610e+02,  2.73880339e+02,             2.75403355e+02,  2.76804780e+02,  2.78070207e+02,             2.79234835e+02,  2.80284018e+02,  2.81251353e+02,             2.82120520e+02,  2.82923836e+02,  2.83643348e+02,             2.84310210e+02,  2.84907333e+02,  2.85740812e+02,             2.86495875e+02,  2.87183902e+02,  2.87806755e+02,             2.88379402e+02,  2.88899485e+02,  2.89372184e+02,             2.89761820e+02,  2.90051027e+02,  2.90329831e+02,             2.90583199e+02,  2.90814356e+02,  2.91023079e+02,             2.91367320e+02,  2.91724450e+02,  2.92045544e+02,             2.92343586e+02,  2.92609412e+02,  2.92856115e+02,             2.93079121e+02,  2.93280599e+02,  2.93466879e+02,             2.93633725e+02,  2.93787566e+02,  2.93928760e+02,             2.94057918e+02,  2.94171205e+02,  2.94279355e+02,             2.94372739e+02,  2.94462054e+02,  2.94542347e+02,             2.94614283e+02],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00, -1.36641339e+01,            -2.56949353e+01, -3.65339408e+01, -4.64069841e+01,            -5.54028686e+01, -6.35995821e+01, -7.10681220e+01,            -7.78731775e+01, -8.94539161e+01, -1.06025634e+02,            -1.20932997e+02, -1.34763877e+02, -1.47137268e+02,            -1.58351801e+02, -1.68835741e+02, -1.78169083e+02,            -1.86601030e+02, -1.94548188e+02, -2.01574005e+02,            -2.08193300e+02, -2.14009275e+02, -2.19511594e+02,            -2.24317764e+02, -2.28887356e+02, -2.32851213e+02,            -2.36640315e+02, -2.40139689e+02, -2.79565543e+02,            -3.25766382e+02, -3.67869415e+02, -4.05713131e+02,            -4.40850849e+02, -4.72649495e+02, -5.01471039e+02,            -5.17176076e+02, -5.23163263e+02, -5.29752212e+02,            -5.35582429e+02, -5.40762533e+02, -5.45810791e+02,            -5.68995791e+02, -5.89704343e+02, -6.08087375e+02,            -6.25426021e+02, -6.40610244e+02, -6.54925655e+02,            -6.67781833e+02, -6.79311821e+02, -6.90104449e+02,            -6.99633636e+02, -7.08506133e+02, -7.16700489e+02,            -7.24221664e+02, -7.30607557e+02, -7.36940752e+02,            -7.42167947e+02, -7.47370783e+02, -7.51998243e+02,            -7.56081896e+02],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00, -9.68976845e-01,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  3.68720080e-01,  3.09620058e+01,             6.78004170e+01,  1.01371378e+02,  1.31560071e+02,             1.59572246e+02,  1.84928184e+02,  2.07914199e+02,             2.20954218e+02,  2.27129841e+02,  2.33995226e+02,             2.40051777e+02,  2.45431838e+02,  2.50673347e+02,             2.69236079e+02,  2.85159056e+02,  2.99290150e+02,             3.12619423e+02,  3.24291879e+02,  3.35296858e+02,             3.45180286e+02,  3.54043950e+02,  3.62340771e+02,             3.69666591e+02,  3.76487111e+02,  3.82786560e+02,             3.88568616e+02,  3.93477958e+02,  3.98345510e+02,             4.02363641e+02,  4.06361744e+02,  4.09917999e+02,             4.13055709e+02],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00, -7.42047513e+00, -2.64227558e+01,            -4.37192376e+01, -5.94791524e+01, -7.38389999e+01,            -8.69231581e+01, -9.88449557e+01, -1.09571014e+02,            -1.19034491e+02, -1.27637232e+02, -1.35475817e+02,            -1.42618044e+02, -1.49125776e+02, -1.61151255e+02,            -1.74158633e+02, -1.85931064e+02, -1.96657994e+02,            -2.06431972e+02, -2.15283466e+02, -2.18436551e+02,            -2.21382759e+02, -2.24160360e+02, -2.26693300e+02,            -2.29001265e+02, -2.31104198e+02, -2.33020313e+02,            -2.34766205e+02, -2.29197167e+02, -2.16487393e+02,            -2.05147275e+02, -1.94504046e+02, -1.85092964e+02,            -1.76592652e+02, -1.68514654e+02, -1.61428957e+02,            -1.55063466e+02, -1.48932141e+02, -1.43616020e+02,            -1.38498773e+02, -1.34107644e+02, -1.29850450e+02,            -1.26234871e+02, -1.22698301e+02, -1.19732541e+02,            -1.16801703e+02, -1.14415778e+02, -9.70975143e+01,            -7.79478962e+01, -6.04966620e+01, -4.48311763e+01,            -3.02597389e+01, -1.70813532e+01, -5.14262258e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  9.51704287e-02,             1.00979264e+01,  1.98453510e+01,  2.85092746e+01,             3.66716835e+01,  4.38287086e+01,  5.05691226e+01,             5.66246632e+01,  6.20583085e+01,  6.71405249e+01,             7.16315311e+01,  7.58109830e+01,  7.96692228e+01,             8.32096263e+01,  8.62217260e+01,  8.92032380e+01,             9.16703718e+01,  9.41212923e+01,  9.63022628e+01,             9.82294421e+01],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  1.07249423e+01,  2.98708205e+01,             4.70612024e+01,  6.30535776e+01,  7.73214769e+01,             9.02427037e+01,  1.02368722e+02,  1.13126474e+02,             1.22832215e+02,  1.32026948e+02,  1.40117597e+02,             1.47779805e+02,  1.54471866e+02,  1.60842617e+02,             1.66364359e+02,  1.71656130e+02,  1.76198467e+02,             1.80586841e+02,  1.84136116e+02,  1.90324243e+02,             1.95603639e+02,  2.00414755e+02,  2.04723395e+02,             2.08744265e+02,  2.12376626e+02,  2.15664449e+02,             2.16223112e+02,  2.14236250e+02,  2.11891816e+02,             2.09849933e+02,  2.08046446e+02,  2.06334688e+02,             2.09048000e+02,  2.12635649e+02,  2.15838921e+02,             2.18843627e+02,  2.21490940e+02,  2.23973928e+02,             2.26207991e+02,  2.28216571e+02,  2.30089459e+02,             2.31750108e+02,  2.33292294e+02,  2.34713473e+02,             2.36016351e+02,  2.37133821e+02,  2.38230875e+02,             2.39148329e+02,  2.40052084e+02,  2.40858196e+02,             2.41574016e+02],           [ 0.00000000e+00,  0.00000000e+00,  4.39167099e+01,             9.11948248e+01,  1.34273201e+02,  1.73517156e+02,             2.09282242e+02,  2.41870058e+02,  2.71562863e+02,             2.94523024e+02,  3.11724868e+02,  3.23628840e+02,             3.34465299e+02,  3.44339094e+02,  3.53335729e+02,             3.61533128e+02,  3.69002292e+02,  3.75138158e+02,             3.79492227e+02,  3.83458578e+02,  3.87072520e+02,             3.90365409e+02,  3.93365767e+02,  3.95111217e+02,             3.96238866e+02,  3.97315160e+02,  3.98295771e+02,             3.99189268e+02,  4.00198190e+02,  4.08663636e+02,             4.16302632e+02,  4.23144408e+02,  4.29375211e+02,             4.35052422e+02,  4.40225282e+02,  4.44938601e+02,             4.49233201e+02,  4.51860678e+02,  4.54350055e+02,             4.56591666e+02,  4.58667887e+02,  4.60528445e+02,             4.62215542e+02,  4.63789062e+02,  4.65192798e+02,             4.66462188e+02,  4.67654746e+02,  4.68712723e+02,             4.69705653e+02,  4.70583274e+02,  4.71408346e+02,             4.72137042e+02,  4.72821750e+02,  4.73428395e+02,             4.73995322e+02,  4.74609787e+02,  4.88709192e+02,             5.05740213e+02,  5.21260699e+02,  5.35211675e+02,             5.48164290e+02,  5.59886261e+02,  5.70510921e+02,             5.76543528e+02,  5.79304110e+02,  5.82431273e+02,             5.85176234e+02,  5.87610894e+02,  5.89984755e+02,             5.98595185e+02,  6.06028752e+02,  6.12621941e+02,             6.18846132e+02,  6.24291474e+02,  6.29429657e+02,             6.34042562e+02,  6.38177930e+02,  6.42051372e+02,             6.45468850e+02,  6.48652331e+02,  6.51593539e+02,             6.54293636e+02,  6.56582200e+02,  6.58856110e+02,             6.60728503e+02,  6.62595845e+02,  6.64255708e+02,             6.65719010e+02],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  2.22420700e+00,             8.40506170e+00,  1.40221248e+01,  1.91402273e+01,             2.38036515e+01,  2.80527900e+01,  3.35745064e+01,             3.91912042e+01,  4.42732349e+01,  4.89039329e+01,             5.31232518e+01,  5.71159051e+01,  6.22997267e+01,             6.71436153e+01,  7.15185283e+01,  7.55036834e+01,             7.91347844e+01,  8.24433079e+01,  8.54579112e+01,             8.82047055e+01,  9.04601432e+01,  9.24531001e+01,             9.42683183e+01,  9.59231132e+01,  9.74301242e+01,             9.88030833e+01,  1.00054948e+02,  1.01194963e+02,             1.02233707e+02,  1.03180712e+02,  1.04043665e+02,             1.04829883e+02,  1.05547098e+02,  1.06199712e+02,             1.06796261e+02,  1.07337852e+02,  1.07834246e+02,             1.08283591e+02,  1.08676167e+02,  1.08790144e+02,             1.08924256e+02,  1.09046456e+02,  1.09158016e+02,             1.09259390e+02,  1.09351846e+02,  1.09436149e+02,             1.09513219e+02,  1.09652233e+02,  1.09844120e+02,             1.09991972e+02,  1.10125028e+02,  1.10252188e+02,             1.10368743e+02,  1.10441912e+02,  1.10508143e+02,             1.10568876e+02,  1.10623828e+02,  1.10674197e+02,             1.10719990e+02,  1.10761597e+02,  1.10799677e+02,             1.10834205e+02,  1.10865760e+02,  1.10894585e+02,             1.10920886e+02,  1.10944569e+02,  1.10966411e+02,             1.10985993e+02,  1.11004066e+02,  1.11020463e+02,             1.11035326e+02]]), 'dev': array([0.        , 0.05641001, 0.11880048, 0.17305008, 0.21808882,           0.2554852 , 0.28652791, 0.31230011, 0.33369665, 0.35412118,           0.37300264, 0.39032216, 0.40470384, 0.41664375, 0.42655648,           0.4347862 , 0.44161866, 0.44738094, 0.45231927, 0.4564217 ,           0.45982761, 0.46265525, 0.46500281, 0.46891586, 0.472756  ,           0.47593769, 0.47857921, 0.48077224, 0.48266112, 0.4850628 ,           0.48708015, 0.48875059, 0.49013731, 0.49128859, 0.4922444 ,           0.49303793, 0.49369674, 0.49444377, 0.49525646, 0.49592659,           0.49648931, 0.49695178, 0.4973351 , 0.49765856, 0.49792371,           0.49814318, 0.49832939, 0.49848145, 0.49861048, 0.49871548,           0.49880484, 0.49887732, 0.49893924, 0.49898927, 0.49903219,           0.49906914, 0.49939168, 0.49974097, 0.50003231, 0.50027232,           0.50047642, 0.50064571, 0.5007865 , 0.50086059, 0.50089074,           0.50092133, 0.50094613, 0.50096647, 0.50098483, 0.50107352,           0.50114759, 0.50120815, 0.50126073, 0.50130323, 0.50134019,           0.50137086, 0.50139632, 0.5014184 , 0.50143649, 0.50145215,           0.50146558, 0.50147706, 0.50148616, 0.5014946 , 0.50150113,           0.50150723, 0.50151232, 0.50151656]), 'nulldev': array([3.08783547e+02, 5.68934729e+03, 1.06973020e+04, 7.46975805e+03,           7.10271730e+01, 1.55454842e+03, 6.49188553e+03, 9.16277396e+01,           9.87704227e+02, 4.15093652e+03, 2.23718544e+04, 5.96715558e+02,           1.00857354e+04, 6.53939354e+02, 3.89722547e+03, 1.33916691e+02,           3.03726890e+02, 2.44310366e+03, 2.26311782e+03, 6.53939354e+02,           1.17879309e+04, 7.81946910e+03, 8.72874672e+03, 5.39163624e+03,           1.11150130e+04, 2.06368156e+03, 1.28658572e+04, 2.03850444e+00,           2.34524814e+03, 4.16957392e+03, 6.33174105e+03, 9.49216882e+03,           8.56961924e+03, 4.59148986e+02, 7.81946910e+03, 4.84029629e+03,           9.32619714e+03, 5.96715558e+02, 1.97605541e+04, 2.08160317e+02,           1.45376646e+04, 3.10498359e+01, 2.42494595e+02, 2.44310366e+03,           1.54449269e+02, 4.13161248e+01, 1.55182425e+04, 1.32698185e+03,           6.49188553e+03, 3.41380338e+03, 2.03268430e+04, 1.48781754e+03,           7.84504134e+03, 2.47193220e+00, 1.30593745e+02, 9.91463057e+03,           2.07682887e+03, 1.83798317e+04, 2.64481471e+03, 7.06083830e+02,           5.48860034e+02, 4.65361451e+02, 3.77336995e+03, 4.68235862e+03,           6.03794878e+02, 4.43186287e+03, 7.29790253e+03, 1.55454842e+03,           6.79433595e+03, 9.88587986e+03, 5.89402852e+00, 1.26400017e+04,           1.11454974e+04, 2.42494595e+02, 1.70491093e+04, 9.91463057e+03,           1.19744351e+04, 6.15091386e+03, 5.53949176e+03, 3.20041811e+03,           1.38232311e+04, 3.89722547e+03, 6.30876938e+03, 2.48290102e+04,           2.54295918e+03, 1.40083737e+03, 4.54650309e+03, 2.34524814e+03,           7.12804700e+03, 2.64481471e+03, 1.80304793e+02, 7.99732462e+03,           6.46862491e+03, 8.91660224e+03, 4.59148986e+02, 6.63048043e+03,           2.96238128e+03, 4.15093652e+03, 1.55182425e+04, 2.34524814e+03,           2.12350119e+02, 1.97382604e+03, 1.71625947e+03, 3.79114049e+03,           3.03726890e+02, 1.89853992e+03, 1.33752859e+03, 5.68934729e+03,           5.26672972e+03, 8.54289120e+03, 7.29790253e+03, 1.94804096e+04,           8.88826971e+01, 1.65308204e+04, 1.62378345e+04, 2.26311782e+03,           3.77336995e+03, 1.22262198e+04, 3.29794785e+03, 7.10271730e+01,           6.33174105e+03, 1.88597052e+03, 1.02875909e+04, 7.81946910e+03,           1.70491093e+04, 1.13576419e+04, 3.79114049e+03, 8.54289120e+03,           1.71625947e+03, 1.11454974e+04, 7.12804700e+03, 4.65361451e+02,           1.18527080e+03, 1.55454842e+03, 2.35844323e+04, 6.79433595e+03,           5.53949176e+03, 1.48781754e+03, 4.56600734e+03, 9.34661734e+02,           8.08137655e+02, 1.17565796e+04, 7.99732462e+03, 1.47669290e+03,           5.86330763e+03, 5.68934729e+03, 2.42494595e+02, 1.20060753e+04,           3.77336995e+03, 4.54650309e+03, 5.48860034e+02, 3.41380338e+03,           5.51716489e+01, 8.02318581e+03, 1.13576419e+04, 1.38232311e+04,           1.30593745e+02, 1.42975201e+04, 1.08738221e+02, 1.52700980e+04,           7.64361358e+03, 6.81817448e+03, 1.06095069e+03, 8.56961924e+03,           6.63048043e+03, 6.46862491e+03, 2.26311782e+03, 5.73387877e+01,           2.64481471e+03, 4.59148986e+02, 4.82021414e+03, 2.45740678e+03,           9.87704227e+02, 6.53939354e+02, 4.16957392e+03, 4.41264757e+03,           1.62746759e+04, 6.01745210e+03, 8.75576372e+03, 5.96715558e+02,           4.54650309e+03, 1.21942906e+04, 4.15093652e+03, 2.34524814e+03,           8.88826971e+01, 7.60228306e+02, 8.16372782e+02, 1.09051575e+04,           6.63048043e+03, 9.25848703e+02, 1.00857354e+04, 1.82980363e-01,           2.03850444e+00, 1.65308204e+04, 9.88587986e+03, 4.15093652e+03,           1.47798090e+04, 6.61640812e+00, 1.60205314e+04, 5.48860034e+02,           1.22262198e+04, 1.09353530e+04, 4.56600734e+03, 1.09051575e+04,           3.53165890e+03, 5.96715558e+02, 1.08738221e+02, 1.82980363e-01,           1.02875909e+04, 7.99732462e+03, 8.20333029e+03, 4.28079205e+03,           1.41167307e+03, 6.46862491e+03, 6.63048043e+03, 6.96019148e+03,           2.74867023e+03, 2.69871366e+02, 1.80304793e+02, 1.11772215e+02,           1.89853992e+03, 1.80011499e+03, 2.26311782e+03, 3.08783547e+02,           2.26719988e+04, 2.26311782e+03, 2.70840215e+04, 1.21942906e+04,           1.65308204e+04, 3.83072499e+02, 1.50239535e+04, 2.48290102e+04,           8.35903567e+03, 3.74702113e+04, 7.64361358e+03, 4.02308100e+03,           3.07223680e+03, 4.56600734e+03, 1.41167307e+03, 9.49216882e+03,           5.10192519e+03, 4.82021414e+03, 1.84205643e+02, 6.98431896e+03,           1.32698185e+03, 1.50239535e+04, 1.50239535e+04, 8.38547477e+03,           9.49216882e+03, 4.54650309e+03, 1.18527080e+03, 1.08738221e+02,           1.18527080e+03, 3.39582414e+02, 6.15091386e+03, 2.42027212e+04,           9.91463057e+03, 1.11150130e+04, 1.04914464e+04, 8.02318581e+03,           2.07682887e+03, 6.98426606e+02, 1.65308204e+04, 3.07223680e+03,           2.86998468e+03, 6.53939354e+02, 1.00857354e+04, 1.01147750e+04,           3.89722547e+03, 5.26672972e+03, 5.99505833e+03, 3.07223680e+03,           1.24483643e+04, 4.59148986e+02, 7.10271730e+01, 2.45740678e+03,           1.06095069e+03, 4.70215182e+03, 2.38015842e+02, 3.65151443e+03,           1.33569422e+04, 2.51451547e+04, 1.19523964e+03, 3.27456283e-01,           2.45740678e+03, 1.09353530e+04, 1.98668440e+03, 1.98668440e+03,           9.10645777e+03, 1.09051575e+04, 5.09505927e+02, 3.18409233e+03,           4.68235862e+03, 6.46571082e+02, 6.53939354e+02, 2.85452576e+03,           2.54295918e+03, 2.94606008e+01, 2.16897335e+03, 6.63048043e+03,           1.56596202e+03, 1.06973020e+04, 2.35926230e+03, 1.33569422e+04,           3.08783547e+02, 3.22461886e+04, 8.20333029e+03, 7.06083830e+02,           1.06973020e+04, 1.88597052e+03, 3.89722547e+03, 2.06368156e+03,           1.96050767e+01, 1.00857354e+04, 4.82021414e+03, 8.74517258e+02,           1.42975201e+04, 7.15246343e+03, 1.05155975e+03, 7.64361358e+03,           4.17293462e+02, 3.89722547e+03, 4.04142944e+03, 1.30593745e+02,           7.60228306e+02, 8.08137655e+02, 5.73387877e+01, 6.61640812e+00,           3.41380338e+03, 5.89402852e+00, 6.46862491e+03, 3.29794785e+03,           8.16372782e+02, 8.72874672e+03, 5.68934729e+03, 3.55594889e+04,           1.71625947e+03, 1.08738221e+02, 2.85452576e+03, 2.09011320e+04,           5.89402852e+00, 3.08827363e+03, 7.64361358e+03, 1.33235682e+04,           4.68235862e+03, 3.39582414e+02, 3.31456258e+03, 7.10271730e+01,           4.56600734e+03, 3.65151443e+03, 8.02318581e+03, 4.17293462e+02,           2.86998468e+03]), 'df': array([ 0,  1,  2,  2,  2,  2,  2,  2,  2,  3,  4,  4,  4,  4,  4,  4,  4,            5,  5,  5,  5,  5,  5,  6,  6,  6,  6,  6,  7,  7,  7,  7,  7,  7,            7,  7,  7,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,            8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9,  8,  9,  9,  9,  9,           10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,           10, 10, 10]), 'lambdau': array([4.40344909e+01, 4.01225881e+01, 3.65582080e+01, 3.33104775e+01,           3.03512665e+01, 2.76549436e+01, 2.51981547e+01, 2.29596201e+01,           2.09199507e+01, 1.90614799e+01, 1.73681106e+01, 1.58251755e+01,           1.44193105e+01, 1.31383387e+01, 1.19711649e+01, 1.09076796e+01,           9.93867143e+00, 9.05574725e+00, 8.25125963e+00, 7.51824046e+00,           6.85034070e+00, 6.24177531e+00, 5.68727320e+00, 5.18203152e+00,           4.72167412e+00, 4.30221361e+00, 3.92001681e+00, 3.57177332e+00,           3.25446682e+00, 2.96534896e+00, 2.70191553e+00, 2.46188480e+00,           2.24317774e+00, 2.04390001e+00, 1.86232557e+00, 1.69688170e+00,           1.54613540e+00, 1.40878100e+00, 1.28362878e+00, 1.16959473e+00,           1.06569116e+00, 9.71018095e-01, 8.84755524e-01, 8.06156282e-01,           7.34539579e-01, 6.69285108e-01, 6.09827663e-01, 5.55652254e-01,           5.06289640e-01, 4.61312263e-01, 4.20330553e-01, 3.82989545e-01,           3.48965810e-01, 3.17964649e-01, 2.89717546e-01, 2.63979838e-01,           2.40528596e-01, 2.19160699e-01, 1.99691066e-01, 1.81951062e-01,           1.65787032e-01, 1.51058969e-01, 1.37639306e-01, 1.25411810e-01,           1.14270570e-01, 1.04119088e-01, 9.48694348e-02, 8.64414957e-02,           7.87622714e-02, 7.17652483e-02, 6.53898214e-02, 5.95807699e-02,           5.42877785e-02, 4.94650019e-02, 4.50706675e-02, 4.10667136e-02,           3.74184599e-02, 3.40943071e-02, 3.10654628e-02, 2.83056927e-02,           2.57910930e-02, 2.34998834e-02, 2.14122185e-02, 1.95100160e-02,           1.77768000e-02, 1.61975581e-02, 1.47586116e-02, 1.34474973e-02]), 'npasses': 1211, 'jerr': 0, 'dim': array([10, 88]), 'offset': False, 'class': 'elnet'}, 'lambda_min': array([1.28362878]), 'lambda_1se': array([7.51824046]), 'class': 'cvglmnet'}             dataset: fetch_california_housing -------------------    {'alpha': 1.0, 'dfmax': 10000000000.0, 'exclude': None, 'family': 'gaussian', 'lambdau': None, 'lower_lambdau': None, 'maxit': 100000.0, 'ncores': -1, 'nlambda': 100, 'parallel': False, 'penalty_factor': None, 'pmax': 10000000000.0, 'standardize': True, 'thresh': 1e-07, 'type_measure': 1, 'upper_lambdau': None, 'verbose': False, 'weights': None}    elapsed: 0.0047762393951416016     df  %dev  lambdau        0  0.000000  0.000000  0.790539    1  1.000000  0.079846  0.720310    2  1.000000  0.146136  0.656320    3  1.000000  0.201171  0.598014    4  1.000000  0.246862  0.544888    5  1.000000  0.284796  0.496482    6  1.000000  0.316289  0.452376    7  1.000000  0.342435  0.412188    8  1.000000  0.364142  0.375570    9  1.000000  0.382163  0.342206    10  1.000000  0.397125  0.311805    11  1.000000  0.409546  0.284105    12  1.000000  0.419859  0.258866    13  1.000000  0.428421  0.235869    14  1.000000  0.435529  0.214915    15  1.000000  0.441430  0.195823    16  2.000000  0.451591  0.178426    17  2.000000  0.460828  0.162575    18  2.000000  0.468496  0.148133    19  2.000000  0.474863  0.134973    20  2.000000  0.480149  0.122982    21  3.000000  0.484680  0.112057    22  3.000000  0.489706  0.102102    23  3.000000  0.493879  0.093032    24  3.000000  0.497344  0.084767    25  3.000000  0.500220  0.077236    26  3.000000  0.502608  0.070375    27  4.000000  0.507848  0.064123    28  4.000000  0.521856  0.058427    29  4.000000  0.533472  0.053236    30  4.000000  0.543117  0.048507    31  4.000000  0.551159  0.044198    32  4.000000  0.557809  0.040271    33  6.000000  0.563606  0.036694    34  6.000000  0.569117  0.033434    35  6.000000  0.573708  0.030464    36  6.000000  0.577542  0.027757    37  6.000000  0.580708  0.025291    38  6.000000  0.583337  0.023045    39  6.000000  0.585536  0.020997    40  6.000000  0.587350  0.019132    41  7.000000  0.589628  0.017432    42  7.000000  0.591806  0.015884    43  7.000000  0.593641  0.014473    44  7.000000  0.595162  0.013187    45  7.000000  0.596442  0.012015    46  7.000000  0.597491  0.010948    47  7.000000  0.598376  0.009975    48  7.000000  0.599099  0.009089    49  7.000000  0.599711  0.008282    50  7.000000  0.600209  0.007546    51  7.000000  0.600633  0.006876    52  7.000000  0.600976  0.006265    53  7.000000  0.601269  0.005708    54  7.000000  0.601506  0.005201    55  7.000000  0.601709  0.004739    56  7.000000  0.601873  0.004318    57  7.000000  0.602014  0.003935    58  7.000000  0.602126  0.003585    59  7.000000  0.602224  0.003267    60  7.000000  0.602306  0.002976    61  7.000000  0.602371  0.002712    62  7.000000  0.602427  0.002471    63  7.000000  0.602471  0.002251    64  7.000000  0.602511  0.002051    65  7.000000  0.602544  0.001869    66  7.000000  0.602569  0.001703    67  7.000000  0.602592  0.001552    68  7.000000  0.602612  0.001414    69  7.000000  0.602626  0.001288    70  7.000000  0.602639  0.001174    71  7.000000  0.602651  0.001070    72  7.000000  0.602659  0.000975    73  7.000000  0.602668  0.000888    74  8.000000  0.602674  0.000809    75  8.000000  0.602680  0.000737    [2.15386169 1.40517538 1.75155998 ... 1.5786708  2.24914669 2.74749123]    [[2.15386169 2.0965379 ]     [1.40517538 1.73841308]     [1.75155998 1.96630653]     ...     [1.5786708  1.82758546]     [2.24914669 2.09450709]     [2.74749123 2.33255459]]    [2.0965379  1.73841308 1.96630653 ... 1.82758546 2.09450709 2.33255459]    elapsed: 0.08082914352416992         best lambda:  0.0029763296520373566         best lambda std. dev:  0.015883776165844302         best coef:  [-2.89480122e+01  3.87657120e-01  1.00434474e-02 -1.47638444e-02      1.56518514e-01  0.00000000e+00 -2.28921823e-03 -3.44888900e-01     -3.46534665e-01]         best GLMNet:  {'lambdau': array([7.90539283e-01, 7.20309952e-01, 6.56319601e-01, 5.98013976e-01,           5.44888063e-01, 4.96481709e-01, 4.52375642e-01, 4.12187837e-01,           3.75570206e-01, 3.42205584e-01, 3.11804983e-01, 2.84105088e-01,           2.58865975e-01, 2.35869035e-01, 2.14915080e-01, 1.95822617e-01,           1.78426275e-01, 1.62575377e-01, 1.48132628e-01, 1.34972934e-01,           1.22982310e-01, 1.12056901e-01, 1.02102075e-01, 9.30316077e-02,           8.47669361e-02, 7.72364751e-02, 7.03749995e-02, 6.41230785e-02,           5.84265609e-02, 5.32361063e-02, 4.85067573e-02, 4.41975507e-02,           4.02711621e-02, 3.66935831e-02, 3.34338263e-02, 3.04636573e-02,           2.77573499e-02, 2.52914635e-02, 2.30446396e-02, 2.09974173e-02,           1.91320646e-02, 1.74324247e-02, 1.58837762e-02, 1.44727053e-02,           1.31869900e-02, 1.20154942e-02, 1.09480708e-02, 9.97547435e-03,           9.08928070e-03, 8.28181406e-03, 7.54608052e-03, 6.87570753e-03,           6.26488862e-03, 5.70833318e-03, 5.20122059e-03, 4.73915849e-03,           4.31814471e-03, 3.93453264e-03, 3.58499960e-03, 3.26651812e-03,           2.97632965e-03, 2.71192073e-03, 2.47100117e-03, 2.25148423e-03,           2.05146858e-03, 1.86922176e-03, 1.70316525e-03, 1.55186075e-03,           1.41399772e-03, 1.28838206e-03, 1.17392574e-03, 1.06963742e-03,           9.74613777e-04, 8.88031775e-04, 8.09141480e-04, 7.37259581e-04]), 'cvm': array([1.32794354, 1.22292703, 1.13481835, 1.06167325, 1.00095081,           0.95054152, 0.90869409, 0.87395456, 0.84511588, 0.82117596,           0.80130284, 0.78480587, 0.77111164, 0.75974414, 0.75030818,           0.74244809, 0.72908801, 0.71682279, 0.70664152, 0.69819024,           0.69117511, 0.68511138, 0.6785909 , 0.67305371, 0.66845763,           0.66464277, 0.66147643, 0.65464086, 0.63599482, 0.6205351 ,           0.6076784 , 0.59699995, 0.58815497, 0.5801874 , 0.57304095,           0.56700578, 0.56200649, 0.55794318, 0.55464407, 0.55190472,           0.54967906, 0.54750774, 0.54502344, 0.54289758, 0.54115612,           0.53975023, 0.53861561, 0.53769851, 0.5369726 , 0.53638576,           0.53592615, 0.53556223, 0.53527887, 0.53506031, 0.5348938 ,           0.53477021, 0.5346767 , 0.53461606, 0.53457253, 0.53454878,           0.53453534, 0.53454145, 0.53454912, 0.53456553, 0.53458344,           0.53460438, 0.53463299, 0.53466219, 0.53468341, 0.53471083,           0.53473878, 0.53475851, 0.53478052, 0.53480475, 0.53482847,           0.53484363]), 'cvsd': array([0.01178608, 0.01293004, 0.01366089, 0.01428224, 0.01477845,           0.01515521, 0.01542664, 0.0156092 , 0.01571898, 0.01577054,           0.01577649, 0.01574747, 0.0156923 , 0.01561818, 0.01553091,           0.01543565, 0.01536175, 0.01521551, 0.01507116, 0.01493074,           0.01479571, 0.01467942, 0.01454884, 0.01441053, 0.01428044,           0.01415866, 0.01404511, 0.01406737, 0.01382548, 0.01361343,           0.01342251, 0.01325314, 0.01310364, 0.01285698, 0.01259207,           0.01240794, 0.0122745 , 0.01218093, 0.01211811, 0.01209786,           0.0120965 , 0.01213827, 0.01201918, 0.0118633 , 0.01172291,           0.01160189, 0.01150054, 0.01141143, 0.01133933, 0.01127929,           0.01122912, 0.01118883, 0.01115662, 0.01113133, 0.01111179,           0.01109708, 0.01108679, 0.01107902, 0.0110729 , 0.01107114,           0.01106948, 0.01107177, 0.01107547, 0.01108005, 0.01108465,           0.0110883 , 0.01109275, 0.01109805, 0.01110229, 0.01110699,           0.01111198, 0.01111601, 0.0111207 , 0.01112377, 0.01112778,           0.01113096]), 'cvup': array([1.33972961, 1.23585706, 1.14847923, 1.07595549, 1.01572926,           0.96569674, 0.92412073, 0.88956376, 0.86083487, 0.8369465 ,           0.81707933, 0.80055334, 0.78680394, 0.77536232, 0.76583909,           0.75788374, 0.74444976, 0.7320383 , 0.72171268, 0.71312098,           0.70597082, 0.6997908 , 0.69313973, 0.68746424, 0.68273806,           0.67880143, 0.67552153, 0.66870824, 0.6498203 , 0.63414852,           0.62110091, 0.61025309, 0.60125861, 0.59304439, 0.58563302,           0.57941372, 0.57428099, 0.57012411, 0.56676219, 0.56400258,           0.56177556, 0.559646  , 0.55704263, 0.55476088, 0.55287903,           0.55135213, 0.55011615, 0.54910994, 0.54831193, 0.54766505,           0.54715527, 0.54675106, 0.54643549, 0.54619164, 0.54600558,           0.5458673 , 0.54576349, 0.54569508, 0.54564544, 0.54561992,           0.54560483, 0.54561322, 0.54562459, 0.54564558, 0.54566809,           0.54569267, 0.54572575, 0.54576024, 0.5457857 , 0.54581782,           0.54585076, 0.54587452, 0.54590122, 0.54592852, 0.54595624,           0.54597458]), 'cvlo': array([1.31615746, 1.20999699, 1.12115746, 1.04739101, 0.98617236,           0.93538631, 0.89326745, 0.85834536, 0.8293969 , 0.80540542,           0.78552635, 0.7690584 , 0.75541934, 0.74412596, 0.73477727,           0.72701244, 0.71372626, 0.70160729, 0.69157036, 0.6832595 ,           0.67637941, 0.67043197, 0.66404206, 0.65864319, 0.65417719,           0.65048411, 0.64743132, 0.64057349, 0.62216933, 0.60692167,           0.59425588, 0.58374681, 0.57505134, 0.56733042, 0.56044887,           0.55459784, 0.54973199, 0.54576224, 0.54252596, 0.53980686,           0.53758257, 0.53536947, 0.53300426, 0.53103428, 0.52943322,           0.52814834, 0.52711506, 0.52628708, 0.52563327, 0.52510648,           0.52469703, 0.5243734 , 0.52412225, 0.52392899, 0.52378201,           0.52367313, 0.52358991, 0.52353705, 0.52349963, 0.52347764,           0.52346586, 0.52346967, 0.52347365, 0.52348548, 0.52349879,           0.52351608, 0.52354024, 0.52356414, 0.52358113, 0.52360384,           0.5236268 , 0.5236425 , 0.52365982, 0.52368098, 0.52370069,           0.52371267]), 'nzero': array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3,           3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7,           7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,           7, 7, 7, 7, 7, 7, 7, 7, 8, 8]), 'name': 'Mean-Squared Error', 'glmnet_fit': {'a0': array([  2.07155206,   1.92869743,   1.79853362,   1.6799332 ,             1.57186891,   1.47340475,   1.38368788,   1.30194121,             1.22745669,   1.15958917,   1.09775081,   1.041406  ,             0.99006671,   0.94328826,   0.90066548,   0.86182919,             0.78419117,   0.70670286,   0.6360984 ,   0.57176624,             0.51314918,   0.47506172,   0.58273794,   0.68084849,             0.77024317,   0.85169627,   0.92591331,   0.1340664 ,            -3.21802346,  -6.26774253,  -9.04592177, -11.588099  ,           -13.8944293 , -16.01874985, -18.08798159, -19.97898154,           -21.71286443, -23.2830481 , -24.71279238, -26.02599746,           -27.21307621, -28.26744172, -28.9480122 , -29.62513797,           -30.24990969, -30.82753782, -31.34777174, -31.82823844,           -32.25971861, -32.65911099, -33.01681384, -33.34884939,           -33.64528032, -33.92136384, -34.16690208, -34.39649895,           -34.59975107, -34.79071341, -34.95880945, -35.11764682,           -35.26352689, -35.39020017, -35.51056873, -35.61482234,           -35.71486741, -35.80749594, -35.88589466, -35.96166964,           -36.03222638, -36.0907743 , -36.14802348, -36.20180937,           -36.24520991, -36.29447496, -36.33196639, -36.3685333 ]), 'beta': array([[ 0.00000000e+00,  3.69089068e-02,  7.05389280e-02,             1.01181351e-01,  1.29101585e-01,  1.54541463e-01,             1.77721332e-01,  1.98841966e-01,  2.18086300e-01,             2.35621021e-01,  2.51598006e-01,  2.66155639e-01,             2.79420013e-01,  2.91506016e-01,  3.02518331e-01,             3.12552343e-01,  3.22748854e-01,  3.32207839e-01,             3.40826515e-01,  3.48679531e-01,  3.55834907e-01,             3.62318017e-01,  3.67885055e-01,  3.72957535e-01,             3.77579389e-01,  3.81790650e-01,  3.85627795e-01,             3.88095546e-01,  3.87056210e-01,  3.86116846e-01,             3.85261953e-01,  3.84464984e-01,  3.83755508e-01,             3.83125549e-01,  3.82627801e-01,  3.82165258e-01,             3.81726613e-01,  3.81342219e-01,  3.80993473e-01,             3.80659146e-01,  3.80369485e-01,  3.82822873e-01,             3.87657120e-01,  3.91827446e-01,  3.95567845e-01,             3.99006714e-01,  4.02098409e-01,  4.04953310e-01,             4.07516028e-01,  4.09888544e-01,  4.12012573e-01,             4.13984518e-01,  4.15744153e-01,  4.17383249e-01,             4.18840038e-01,  4.20202429e-01,  4.21407331e-01,             4.22539521e-01,  4.23534647e-01,  4.24475087e-01,             4.25342286e-01,  4.26092646e-01,  4.26805003e-01,             4.27418926e-01,  4.28007930e-01,  4.28556755e-01,             4.29017421e-01,  4.29462125e-01,  4.29879179e-01,             4.30220014e-01,  4.30552663e-01,  4.30867949e-01,             4.31115041e-01,  4.31407474e-01,  4.31626377e-01,             4.31836134e-01],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  1.33369662e-03,  2.76189648e-03,             4.06321901e-03,  5.24893562e-03,  6.32931645e-03,             7.31389310e-03,  8.21261862e-03,  9.03150383e-03,             9.77764153e-03,  1.04574944e-02,  1.10769510e-02,             1.14705147e-02,  1.12926558e-02,  1.11317164e-02,             1.09852236e-02,  1.08491056e-02,  1.07275245e-02,             1.06183086e-02,  1.05377293e-02,  1.04630180e-02,             1.03924495e-02,  1.03303673e-02,  1.02740180e-02,             1.02202715e-02,  1.01734710e-02,  1.00897532e-02,             1.00434474e-02,  9.99046829e-03,  9.94106280e-03,             9.89364905e-03,  9.85243264e-03,  9.81285130e-03,             9.77878640e-03,  9.74577568e-03,  9.71766435e-03,             9.69012117e-03,  9.66695992e-03,  9.64396712e-03,             9.62492522e-03,  9.60572308e-03,  9.59011509e-03,             9.57407572e-03,  9.56133872e-03,  9.54794508e-03,             9.53533462e-03,  9.52584661e-03,  9.51565144e-03,             9.50810723e-03,  9.49964598e-03,  9.49143017e-03,             9.48588215e-03,  9.47946949e-03,  9.47311374e-03,             9.46919501e-03,  9.46440835e-03,  9.45950373e-03,             9.45688749e-03,  9.45132176e-03,  9.44858552e-03,             9.44130490e-03],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00, -5.45971201e-03,            -1.47638444e-02, -2.29527847e-02, -3.03213745e-02,            -3.71200603e-02, -4.32155195e-02, -4.88623884e-02,            -5.39137617e-02, -5.86079073e-02, -6.27931194e-02,            -6.66959919e-02, -7.01616765e-02, -7.34069655e-02,            -7.62745909e-02, -7.89731217e-02, -8.13432337e-02,            -8.35867927e-02, -8.55424347e-02, -8.74068838e-02,            -8.91292068e-02, -9.06024308e-02, -9.20153003e-02,            -9.32180705e-02, -9.43866996e-02, -9.54795488e-02,            -9.63807212e-02, -9.72633558e-02, -9.80951779e-02,            -9.87597389e-02, -9.94198884e-02, -1.00049959e-01,            -1.00529109e-01, -1.01125665e-01, -1.01555120e-01,            -1.01981360e-01],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             1.00918465e-03,  1.50789768e-02,  2.79207547e-02,             3.96644557e-02,  5.03268779e-02,  6.00383505e-02,             6.89282660e-02,  7.69912154e-02,  1.08926792e-01,             1.56518514e-01,  1.98800026e-01,  2.36935453e-01,             2.72099839e-01,  3.03666611e-01,  3.32875537e-01,             3.59039527e-01,  3.83318526e-01,  4.04999643e-01,             4.25184157e-01,  4.43141508e-01,  4.59923618e-01,             4.74786190e-01,  4.88739712e-01,  5.01028304e-01,             5.12628595e-01,  5.22773570e-01,  5.32413696e-01,             5.41308481e-01,  5.48953012e-01,  5.56257505e-01,             5.62508429e-01,  5.68553441e-01,  5.74194278e-01,             5.78881710e-01,  5.83448614e-01,  5.87740830e-01,             5.91206035e-01,  5.94626325e-01,  5.97878609e-01,             6.00389627e-01,  6.03440785e-01,  6.05675334e-01,             6.07851891e-01],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00, -4.56049861e-08,            -1.37960902e-07],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,            -2.97720011e-04, -6.06104752e-04, -8.87055238e-04,            -1.14297406e-03, -1.37622247e-03, -1.58875608e-03,            -1.78233867e-03, -1.95878727e-03, -2.12742966e-03,            -2.28921823e-03, -2.43583353e-03, -2.56923372e-03,            -2.69085768e-03, -2.80156567e-03, -2.90253796e-03,            -2.99443853e-03, -3.07827340e-03, -3.15456129e-03,            -3.22416821e-03, -3.28749367e-03, -3.34528751e-03,            -3.39785044e-03, -3.44583583e-03, -3.48946222e-03,            -3.52930315e-03, -3.56550844e-03, -3.59858591e-03,            -3.62875304e-03, -3.65613482e-03, -3.68115910e-03,            -3.70386703e-03, -3.72463531e-03, -3.74359159e-03,            -3.76075916e-03, -3.77646690e-03, -3.79081127e-03,            -3.80377682e-03, -3.81564822e-03, -3.82649783e-03,            -3.83627584e-03, -3.84536500e-03, -3.85318347e-03,            -3.85991343e-03],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,            -4.26219891e-04, -4.77517531e-03, -8.73778142e-03,            -1.23483605e-02, -1.56381857e-02, -1.86357520e-02,            -2.97667447e-02, -6.62889605e-02, -9.95115211e-02,            -1.29775326e-01, -1.57480595e-01, -1.82604176e-01,            -2.05773443e-01, -2.28277678e-01, -2.48849642e-01,            -2.67724200e-01, -2.84806306e-01, -3.00359530e-01,            -3.14656427e-01, -3.27569944e-01, -3.38568753e-01,            -3.44888900e-01, -3.51353261e-01, -3.57344154e-01,            -3.62896139e-01, -3.67890055e-01, -3.72510103e-01,            -3.76651761e-01, -3.80492916e-01, -3.83925855e-01,            -3.87119816e-01, -3.89964150e-01, -3.92620478e-01,            -3.94975913e-01, -3.97185544e-01, -3.99134759e-01,            -4.00973133e-01, -4.02584619e-01, -4.04114281e-01,            -4.05519980e-01, -4.06733693e-01, -4.07893189e-01,            -4.08891532e-01, -4.09855867e-01, -4.10749904e-01,            -4.11500238e-01, -4.12230965e-01, -4.12912688e-01,            -4.13472586e-01, -4.14025097e-01, -4.14545665e-01,            -4.14960450e-01, -4.15441966e-01, -4.15806129e-01,            -4.16167317e-01],           [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,             0.00000000e+00,  0.00000000e+00,  0.00000000e+00,            -9.76512662e-03, -4.87586353e-02, -8.42328207e-02,            -1.16548205e-01, -1.46123093e-01, -1.72949928e-01,            -1.97665029e-01, -2.21590530e-01, -2.43457677e-01,            -2.63512693e-01, -2.81670091e-01, -2.98203052e-01,            -3.13392971e-01, -3.27119885e-01, -3.39115060e-01,            -3.46534665e-01, -3.53989218e-01, -3.60878352e-01,            -3.67252791e-01, -3.72991489e-01, -3.78294486e-01,            -3.83054050e-01, -3.87462486e-01, -3.91408025e-01,            -3.95073220e-01, -3.98342708e-01, -4.01390500e-01,            -4.04098459e-01, -4.06633290e-01, -4.08874683e-01,            -4.10983195e-01, -4.12836695e-01, -4.14590719e-01,            -4.16201933e-01, -4.17598433e-01, -4.18927767e-01,            -4.20076927e-01, -4.21182071e-01, -4.22205705e-01,            -4.23069724e-01, -4.23906908e-01, -4.24686908e-01,            -4.25332016e-01, -4.25964718e-01, -4.26559676e-01,            -4.27037839e-01, -4.27584528e-01, -4.27999904e-01,            -4.28408964e-01]]), 'dev': array([0.        , 0.07984633, 0.14613615, 0.20117112, 0.24686213,           0.2847956 , 0.31628864, 0.34243471, 0.36414164, 0.38216311,           0.39712485, 0.40954636, 0.4198589 , 0.42842056, 0.43552861,           0.44142983, 0.45159058, 0.46082763, 0.4684964 , 0.47486315,           0.48014893, 0.48467976, 0.48970616, 0.49387917, 0.49734368,           0.50021998, 0.50260793, 0.50784849, 0.52185647, 0.53347216,           0.54311702, 0.55115888, 0.55780898, 0.56360578, 0.56911693,           0.57370753, 0.57754161, 0.58070799, 0.58333684, 0.58553607,           0.58734952, 0.58962779, 0.59180646, 0.59364078, 0.59516199,           0.59644205, 0.59749115, 0.59837571, 0.59909904, 0.59971064,           0.60020939, 0.6006325 , 0.60097642, 0.60126932, 0.60150647,           0.60170939, 0.60187289, 0.6020136 , 0.60212631, 0.60222397,           0.60230602, 0.6023707 , 0.6024271 , 0.60247148, 0.60251067,           0.60254397, 0.60256948, 0.6025922 , 0.60261166, 0.60262621,           0.60263938, 0.6026508 , 0.60265903, 0.60266799, 0.60267415,           0.60267971]), 'nulldev': array([0.71665039, 1.22201514, 1.94477545, ..., 0.48518478, 1.44347715,           0.36306899]), 'df': array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3,           3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7,           7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,           7, 7, 7, 7, 7, 7, 7, 7, 8, 8]), 'lambdau': array([7.90539283e-01, 7.20309952e-01, 6.56319601e-01, 5.98013976e-01,           5.44888063e-01, 4.96481709e-01, 4.52375642e-01, 4.12187837e-01,           3.75570206e-01, 3.42205584e-01, 3.11804983e-01, 2.84105088e-01,           2.58865975e-01, 2.35869035e-01, 2.14915080e-01, 1.95822617e-01,           1.78426275e-01, 1.62575377e-01, 1.48132628e-01, 1.34972934e-01,           1.22982310e-01, 1.12056901e-01, 1.02102075e-01, 9.30316077e-02,           8.47669361e-02, 7.72364751e-02, 7.03749995e-02, 6.41230785e-02,           5.84265609e-02, 5.32361063e-02, 4.85067573e-02, 4.41975507e-02,           4.02711621e-02, 3.66935831e-02, 3.34338263e-02, 3.04636573e-02,           2.77573499e-02, 2.52914635e-02, 2.30446396e-02, 2.09974173e-02,           1.91320646e-02, 1.74324247e-02, 1.58837762e-02, 1.44727053e-02,           1.31869900e-02, 1.20154942e-02, 1.09480708e-02, 9.97547435e-03,           9.08928070e-03, 8.28181406e-03, 7.54608052e-03, 6.87570753e-03,           6.26488862e-03, 5.70833318e-03, 5.20122059e-03, 4.73915849e-03,           4.31814471e-03, 3.93453264e-03, 3.58499960e-03, 3.26651812e-03,           2.97632965e-03, 2.71192073e-03, 2.47100117e-03, 2.25148423e-03,           2.05146858e-03, 1.86922176e-03, 1.70316525e-03, 1.55186075e-03,           1.41399772e-03, 1.28838206e-03, 1.17392574e-03, 1.06963742e-03,           9.74613777e-04, 8.88031775e-04, 8.09141480e-04, 7.37259581e-04]), 'npasses': 800, 'jerr': 0, 'dim': array([ 8, 76]), 'offset': False, 'class': 'elnet'}, 'lambda_min': array([0.00297633]), 'lambda_1se': array([0.01588378]), 'class': 'cvglmnet'}

2 – GLMNet + nnetsauce

import glmnetforpython as glmnetimport mlsauce as msimport nnetsauce as nsfrom sklearn.datasets import load_breast_cancer, load_wine, load_irisfrom sklearn.model_selection import train_test_splitfrom time import timefor dataset in [load_breast_cancer, load_wine, load_iris]:    print(f"\n\n dataset: {dataset.__name__} -----")    X, y = dataset(return_X_y=True)    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,                                                        random_state=123)    regr = ms.MultiTaskRegressor(glmnet.GLMNet(lambdau=1000))    model = ms.GenericBoostingClassifier(regr, tolerance=1e-2)    # Train the model on the training datac    start_time = time()    model.fit(X_train, y_train)    end_time = time()    print(f"Training time: {end_time - start_time} seconds")    # Evaluate the model's performance (e.g., using accuracy)    accuracy = model.score(X_test, y_test)    print(f"Accuracy: {accuracy}")    clf = ns.CustomClassifier(ns.MultitaskClassifier(glmnet.GLMNet(lambdau=1000)),                              n_hidden_features=10)    # Train the model on the training datac    start_time = time()    model.fit(X_train, y_train)    end_time = time()    print(f"Training time: {end_time - start_time} seconds")    # Evaluate the model's performance (e.g., using accuracy)    accuracy = model.score(X_test, y_test)    print(f"Accuracy: {accuracy}")    clf = ns.CustomClassifier(ns.SimpleMultitaskClassifier(glmnet.GLMNet(lambdau=1000)))    # Train the model on the training datac    start_time = time()    model.fit(X_train, y_train)    end_time = time()    print(f"Training time: {end_time - start_time} seconds")    # Evaluate the model's performance (e.g., using accuracy)    accuracy = model.score(X_test, y_test)    print(f"Accuracy: {accuracy}")    clf = ns.DeepClassifier(ns.MultitaskClassifier(glmnet.GLMNet(lambdau=1000)))    # Train the model on the training datac    start_time = time()    model.fit(X_train, y_train)    end_time = time()    print(f"Training time: {end_time - start_time} seconds")    # Evaluate the model's performance (e.g., using accuracy)    accuracy = model.score(X_test, y_test)    print(f"Accuracy: {accuracy}")    clf = ns.DeepClassifier(ns.SimpleMultitaskClassifier(glmnet.GLMNet(lambdau=1000)))    # Train the model on the training datac    start_time = time()    model.fit(X_train, y_train)    end_time = time()    print(f"Training time: {end_time - start_time} seconds")    # Evaluate the model's performance (e.g., using accuracy)    accuracy = model.score(X_test, y_test)    print(f"Accuracy: {accuracy}")    /usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.      and should_run_async(code)             dataset: load_breast_cancer -----    100%|██████████| 100/100 [00:18<00:00,  5.46it/s]    Training time: 18.33358597755432 seconds    Accuracy: 0.9649122807017544    100%|██████████| 100/100 [00:18<00:00,  5.31it/s]    Training time: 18.904021501541138 seconds    Accuracy: 0.9649122807017544    100%|██████████| 100/100 [00:12<00:00,  8.24it/s]    Training time: 12.280655860900879 seconds    Accuracy: 0.9649122807017544    100%|██████████| 100/100 [00:23<00:00,  4.32it/s]    Training time: 23.297285318374634 seconds    Accuracy: 0.9649122807017544    100%|██████████| 100/100 [00:24<00:00,  4.08it/s]    Training time: 24.91062593460083 seconds    Accuracy: 0.9649122807017544             dataset: load_wine -----    100%|██████████| 100/100 [00:03<00:00, 28.64it/s]    Training time: 3.5058298110961914 seconds    Accuracy: 1.0    100%|██████████| 100/100 [00:05<00:00, 16.76it/s]    Training time: 6.019681453704834 seconds    Accuracy: 1.0    100%|██████████| 100/100 [00:08<00:00, 11.76it/s]    Training time: 8.692431688308716 seconds    Accuracy: 1.0    100%|██████████| 100/100 [00:20<00:00,  4.85it/s]    Training time: 20.893232583999634 seconds    Accuracy: 1.0    100%|██████████| 100/100 [00:13<00:00,  7.42it/s]    Training time: 13.870125532150269 seconds    Accuracy: 1.0             dataset: load_iris -----     14%|█▍        | 14/100 [00:00<00:05, 16.97it/s]    Training time: 0.8306210041046143 seconds    Accuracy: 0.9333333333333333    100%|██████████| 14/14 [00:00<00:00, 35.76it/s]    Training time: 0.40160202980041504 seconds    Accuracy: 0.9333333333333333    100%|██████████| 14/14 [00:00<00:00, 30.18it/s]    Training time: 0.47559595108032227 seconds    Accuracy: 0.9333333333333333    100%|██████████| 14/14 [00:00<00:00, 30.39it/s]    Training time: 0.4738032817840576 seconds    Accuracy: 0.9333333333333333    100%|██████████| 14/14 [00:00<00:00, 26.63it/s]    Training time: 0.5447156429290771 seconds    Accuracy: 0.9333333333333333from sklearn.datasets import load_diabetes, fetch_california_housingfor dataset in [load_diabetes, fetch_california_housing]:    print(f"\n\n dataset: {dataset.__name__} -----")    X, y = dataset(return_X_y=True)    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,                                                        random_state=123)    regr = glmnet.GLMNet(lambdau=1000)    model = ms.GenericBoostingRegressor(regr, backend="cpu", tolerance=1e-2)    # Train the model on the training datac    start_time = time()    model.fit(X_train, y_train)    end_time = time()    print(f"Training time: {end_time - start_time} seconds")    # Evaluate the model's performance (e.g., using accuracy)    preds = model.predict(X_test)    rmse = ((preds - y_test)**2).mean()**0.5    print(f"RMSE: {rmse}")    model = ns.CustomRegressor(regr)    # Train the model on the training datac    start_time = time()    model.fit(X_train, y_train)    end_time = time()    print(f"Training time: {end_time - start_time} seconds")    # Evaluate the model's performance (e.g., using accuracy)    preds = model.predict(X_test)    rmse = ((preds - y_test)**2).mean()**0.5    print(f"RMSE: {rmse}")    model = ns.DeepRegressor(regr)    # Train the model on the training datac    start_time = time()    model.fit(X_train, y_train)    end_time = time()    print(f"Training time: {end_time - start_time} seconds")    # Evaluate the model's performance (e.g., using accuracy)    preds = model.predict(X_test)    rmse = ((preds - y_test)**2).mean()**0.5    print(f"RMSE: {rmse}")    /usr/local/lib/python3.10/dist-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above.      and should_run_async(code)             dataset: load_diabetes -----     57%|█████▋    | 57/100 [00:00<00:00, 230.67it/s]    Training time: 0.25351572036743164 seconds    RMSE: 50.47735955241068    Training time: 0.04386782646179199 seconds    RMSE: 51.2098185574396    Training time: 0.09994053840637207 seconds    RMSE: 51.02354464725009             dataset: fetch_california_housing -----     52%|█████▏    | 52/100 [00:00<00:00, 58.32it/s]    Training time: 0.9048025608062744 seconds    RMSE: 0.8216935762732704    Training time: 0.1747438907623291 seconds    RMSE: 0.8218417233321206    Training time: 0.512531042098999 seconds    RMSE: 0.8218417233321208

xxx

To leave a comment for the author, please follow the link and comment on their blog: T. Moudiki's Webpage - R.

R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
Continue reading: GLMNet in Python: Generalized Linear Models