‘Bayesian’ optimization of hyperparameters in a R machine learning model using the bayesianrvfl package
R-bloggers 2025-04-26
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.
In this post, I will demonstrate how to use the bayesianrvfl
package for ‘Bayesian’ optimization of hyperparameters in a machine learning model. We will use the Sonar
dataset from the mlbench
package and optimize hyperparameters for an XGBoost model.
The surrogate model used for Bayesian optimization is a Non-Bayesian Gaussian Random Vector Functional Link (RVFL) network (instead of a Gaussian Process) (see Chapter 6), whose number of nodes in the hidden layer and volatility of residuals are chosen by using maximum likelihood estimation (MLE). This surrogate model is trained on 10 results of the objective function evaluations, and an Expected Improvement acquisition function is used to determine the next point to sample in the hyperparameter space.
options(repos = c( techtonique = "https://r-packages.techtonique.net", CRAN = "https://cloud.r-project.org" ))install.packages("bayesianrvfl")install.packages("mlbench") library("bayesianrvfl")library("mlbench")data(Sonar)library(caret)set.seed(998)inTraining <- createDataPartition(Sonar$Class, p = .75, list = FALSE)training <- Sonar[ inTraining,]testing <- Sonar[-inTraining,]objective <- function(xx) { fitControl <- trainControl(method = "cv", number = 3, classProbs = TRUE, summaryFunction = twoClassSummary) set.seed(825) model <- train(Class ~ ., data = training, method = "xgbTree", trControl = fitControl, verbose = FALSE, tuneGrid = data.frame(max_depth = floor(xx[1]), eta = xx[2], subsample = xx[3], nrounds = floor(xx[5]), gamma = 0, colsample_bytree = xx[4], min_child_weight = 1), metric = "ROC") # Return the ROC value (higher is better) return(-getTrainPerf(model)$TrainROC)}(res_rvfl <- bayesianrvfl::bayes_opt(objective, # objective function lower = c(1L, 0.001, 0.7, 0.7, 100L), # lower bound for search upper = c(8L, 0.1, 1, 1, 250L), # upper bound for search type_acq = "ei", # type of acquisition function nb_init = 10L, # number of points in initial design nb_iter = 40L, # number of iterations of the algo surrogate_model = "rvfl")) # surrogate model
out-of-sample prediction
xx <- res_rvfl$best_paramfitControl <- trainControl(method = "none", classProbs = TRUE) set.seed(825) model <- train(Class ~ ., data = training, method = "xgbTree", trControl = fitControl, verbose = FALSE, tuneGrid = data.frame(max_depth = floor(xx[1]), eta = xx[2], subsample = xx[3], nrounds = floor(xx[5]), gamma = 0, colsample_bytree = xx[4], min_child_weight = 1), metric = "ROC")preds <- predict(model, newdata = testing)caret::confusionMatrix(data = preds, reference = testing$Class)## Confusion Matrix and Statistics## ## Reference## Prediction M R## M 22 4## R 5 20## ## Accuracy : 0.8235 ## 95% CI : (0.6913, 0.916)## No Information Rate : 0.5294 ## P-Value [Acc > NIR] : 1.117e-05 ## ## Kappa : 0.6467 ## ## Mcnemar's Test P-Value : 1 ## ## Sensitivity : 0.8148 ## Specificity : 0.8333 ## Pos Pred Value : 0.8462 ## Neg Pred Value : 0.8000 ## Prevalence : 0.5294 ## Detection Rate : 0.4314 ## Detection Prevalence : 0.5098 ## Balanced Accuracy : 0.8241 ## ## 'Positive' Class : M ## # Get probability predictions for the whole test setprobs <- predict(model, newdata = testing, type = "prob")# Create calibration curve datacreate_calibration_data <- function(probs, actual, n_bins = 10) { # Convert actual to numeric (0/1) actual_numeric <- as.numeric(actual == levels(actual)[2]) # Create bins based on predicted probabilities bins <- cut(probs[,2], breaks = seq(0, 1, length.out = n_bins + 1), include.lowest = TRUE) # Calculate mean predicted probability and actual outcome for each bin cal_data <- data.frame( bin_mid = tapply(probs[,2], bins, mean), actual_freq = tapply(actual_numeric, bins, mean), n_samples = tapply(actual_numeric, bins, length) ) cal_data$bin <- 1:nrow(cal_data) return(na.omit(cal_data))}# Generate calibration datacal_data <- create_calibration_data(probs, testing$Class)# Plot calibration curvelibrary(ggplot2)ggplot(cal_data, aes(x = bin_mid, y = actual_freq)) + geom_point(aes(size = n_samples)) + geom_abline(intercept = 0, slope = 1, linetype = "dashed", color = "red") + geom_line() + xlim(0,1) + ylim(0,1) + labs(x = "Predicted Probability", y = "Observed Frequency", size = "Number of\nSamples", title = "Calibration Curve for XGBoost Model") + theme_minimal()# Calculate calibration metricsbrier_score <- mean((probs[,2] - as.numeric(testing$Class == levels(testing$Class)[2]))^2)cat("Brier Score:", round(brier_score, 4), "\n")
## Brier Score: 0.1268
R-bloggers.com offers daily e-mail updates about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.
Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.