PCA / EOF for data with missing values – a comparison of accuracy
R-bloggers 2014-09-15
Summary:
Not all Principal Component Analysis (PCA) (also called Empirical Orthogonal Function analysis, EOF) approaches are equal when it comes to dealing with a data field that contain missing values (i.e. "gappy"). The following post compares several methods by assessing the accuracy of the derived PCs to reconstruct the "true" data set, as was similarly conducted by Taylor et al. (2013). The gappy EOF methods to be compared are:
- LSEOF - "Least-Squares Empirical Orthogonal Functions" - The traditional approach, which modifies the covariance matrix used for the EOF decomposition by the number of paired observations, and further scales the projected PCs by these same weightings (see Björnsson and Venegas 1997, von Storch and Zweiers 1999 for details).
- RSEOF - "Recursively Subtracted Empirical Orthogonal Functions" - This approach modifies the LSEOF approach by recursively solving for the leading EOF, whose reconstructed field is then subtracted from the original field. This recursive subtraction is done until a given stopping point (i.e. number of EOFs, % remaining variance, etc.) (see Taylor et al. 2013 for details)
- DINEOF - "Data Interpolating Empirical Orthogonal Functions" - This approach gradually solves for EOFs by means of an iterative algorothm to fit EOFS to a given number of non-missing value reference points (small percentage of observations) via RMSE minimization (see Beckers and Rixen 2003 for details).