Salidroside prevents gestational hypertension-induced impairment of offspring learning and memory via Wnt/Skp2 pathway
pubmed: wnt1 2024-08-31
Neurosci Lett. 2024 May 29;832:137787. doi: 10.1016/j.neulet.2024.137787. Epub 2024 Apr 17.
ABSTRACT
BACKGROUND: Salidroside (Sal) has been found to protect against multiple impairments caused by diabetes, and we designed this study to investigate the effect of Sal on gestational hypertension (GHP)-induced impairment of offspring learning and memory.
METHODS: We established a GHP rat model by intraperitoneal injection of NG-nitro-L-arginine methyl ester (L-NAME), and treated with Sal by daily gavage. We used Morris Water Maze test to evaluate the learning and memory ability of offspring rats. HE staining was used to measured the pathological changes in hippocampus of offspring. Immunohistochemistry, cellular immunofluorescence and western blot were used to detect the protein expression.
RESULTS: The learning and memory abilities of GHP offspring rats were significantly lower than those of normal rat offspring, while Sal treatment could significantly improve the learning and memory abilities of GHP offspring rats. HE staining did not reveal pathological differences in the hippocampus of normal rats, GHP rats and Sal-treated GHP offspring rats. However, Sal treatment can significantly increase the expression of Wnt1 and Skp2 protein, and decrease the expression of P27kiwf and P21waf1 protein in the hippocampus of GHP offspring rats. In vitro, Sal significantly promoted the proliferation and differentiation on neural stem cell, while Wnt1 knockdown could reverse these promotions by Sal. In the hippocampus of GHP offspring rats, Sal treatment significantly increased the expression of Tuj1, SOX2, Ki67 and DCX protein.
CONCLUSION: Salidroside significantly improves the learning and memory impairment of offspring caused by GHP, and its mechanism may be related to the fact that Salidroside promotes the proliferation and differentiation of neural stem cells by activating the Wnt1/Skp2 signaling pathway.
PMID:38641312 | DOI:10.1016/j.neulet.2024.137787