Relaxin suppresses atrial fibrillation, reverses fibrosis and reduces inflammation in aged hearts

pubmed: wnt1 2024-09-03

Biochem Pharmacol. 2024 Sep;227:116407. doi: 10.1016/j.bcp.2024.116407. Epub 2024 Jul 3.

ABSTRACT

Healthy aging results in cardiac structural and electrical remodeling that increase susceptibility to cardiovascular diseases. Relaxin has shown broad cardioprotective effects including anti-fibrotic, anti-arrhythmic and anti-inflammatory outcomes in multiple models. This paper focuses on the cardioprotective effects of Relaxin in a rat model of aging. Sustained atrial or ventricular fibrillation are readily induced in the hearts of aged but not young control animals. Treatment with Relaxin suppressed this arrhythmogenic response by increasing conduction velocity, decreasing fibrosis and promoting substantial cardiac remodeling. Relaxin treatment resulted in a significant increase in the levels of: Nav1.5, Cx43, βcatenin and Wnt1 in rat hearts. In isolated cardiomyocytes, Relaxin increased Nav1.5 expression. These effects were mimicked by CHIR 99021, a pharmacological activator of canonical Wnt signaling, but blocked by the canonical Wnt inhibitor Dickkopf1. Relaxin prevented TGF-β-dependent differentiation of cardiac fibroblasts into myofibroblasts while increasing the expression of Wnt1; the effects of Relaxin on cardiac fibroblast differentiation were blocked by Dickkopf1. RNASeq studies demonstrated reduced expression of pro-inflammatory cytokines and an increase in the expression of α- and β-globin in Relaxin-treated aged males. Relaxin reduces arrhythmogenicity in the hearts of aged rats by reduction of fibrosis and increased conduction velocity. These changes are accompanied by substantial remodeling of the cardiac tissue and appear to be mediated by increased canonical Wnt signaling. Relaxin also exerts significant anti-inflammatory and anti-oxidant effects in the hearts of aged rodents. The mechanisms by which Relaxin increases the expression of Wnt ligands, promotes Wnt signaling and reprograms gene expression remain to be determined.

PMID:38969298 | DOI:10.1016/j.bcp.2024.116407