Early-Onset Osteoporosis: Molecular Analysis in Large Cohort and Focus on the PLS3 Gene

pubmed: wnt1 2024-12-28

Calcif Tissue Int. 2024 Nov;115(5):591-598. doi: 10.1007/s00223-024-01288-z. Epub 2024 Sep 24.

ABSTRACT

Osteoporosis is a skeletal disorder characterized by abnormal bone microarchitecture and low bone mineral density (BMD), responsible for an increased risk of fractures and skeletal fragility. It is a common pathology of the aging population. However, when osteoporosis occurs in children or young adults, it strongly suggests an underlying genetic etiology. Over the past two decades, several genes have been identified as responsible for this particular kind of considered monogenic early-onset osteoporosis (EOOP) or juvenile osteoporosis, the main ones being COL1A1, COL1A2, LRP5, LRP6, WNT1, and more recently PLS3. In this study, the objective was to characterize a large cohort of patients diagnosed with primary osteoporosis and to establish its diagnosis yield. The study included 577 patients diagnosed with primary osteoporosis and its diagnosis yield was established. To this end, next-generation sequencing (NGS) of a panel of 21 genes known to play a role in bone fragility was carried out. A genetic etiology was explained in about 18% of cases, while the others remain unexplained. The most frequently identified gene associated with EOOP is LRP5, which was responsible for 8.2% of the positive results (47 patients). As unexpected, 17 patients (2.9%) had a variant in PLS3 which encodes plastin 3. Alterations of PLS3 are associated with dominant X-linked osteoporosis, an extremely rare disease. Given the rarity of this disease, we focused on it. It was observed that males were more affected than females, but it is noteworthy that three females with a particularly severe phenotype were identified. Of these three, two had a variant in an additional gene involved in EOP, illustrating the probable existence of digenism. We significantly increase the number of variants potentially associated with EOOP, especially in PLS3. The results of our study demonstrate that molecular analysis in EOOP is beneficial and useful.

PMID:39316135 | DOI:10.1007/s00223-024-01288-z