TBG096 Ameliorates Memory Deficiency in AD Mouse Model via Promoting Neurogenesis and Regulation of Hsc70/HK2/PKM2/LAMP2A Signaling Pathway
pubmed: wnt1 2025-03-29
Int J Mol Sci. 2025 Mar 20;26(6):2804. doi: 10.3390/ijms26062804.
ABSTRACT
In previous studies, we isolated a series of novel gentisides with nerve growth factor (NGF)-mimic activities from Gentiana rigescens Franch and conducted continuous structure-activity relationship (SAR) studies. Recently, a lead compound named TBG096 was discovered with significant NGF-mimic activity, low toxicity, and ability to pass through the blood-brain barrier (BBB). At the cell level, TBG096 exerts NGF-mimic activity by regulation of heat-shock cognate protein 70 (Hsc70) and downstream proteins. Subsequently, high-fat diet (HFD)-induced Alzheimer disease (AD) mouse models were used to evaluate the anti-AD efficacy of the compound. TBG096 significantly improved the memory dysfunction of AD mice at doses of 0.1, 5, and 20 mg/kg, respectively. In order to elucidate the mechanism of action of the compound against AD, the RNA-sequence analysis of transcriptomics, quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence staining, and Western blot analysis were performed using animal samples. TBG096 significantly increased the expression of the Wnt gene family (Wnt10b, Wnt5a, and Wnt1) and the number of mature neurons and newborn neurons in the hippocampus and cerebral cortex of AD mice, respectively. At the same time, it reduced the activity of microglia, astrocyte cells, and expression of inducible nitric oxide synthase (INOS) in the brain. Moreover, this compound significantly increased phosphorylated-adenosine 5'-monophosphate-activated protein kinase (AMPK), Hsc70, and lysosomal-associated membrane protein 2a (LAMP2A) and decreased the expression of hexokinase 2 (HK2), pyruvate kinase M2 (PKM2), amyloid precursor protein (APP), microtubule-associated protein tau (Tau), phosphoryl-Tau, and β-amyloid (Aβ) at the protein level. These results suggest that TBG096 produced the NGF-mimic activity and the anti-AD effect via promoting neurogenesis and modification of the Hsc70/HK2/PKM2/LAMP2A signaling pathway, proposing a potential novel approach to counteracting cognitive decline by developing small molecules that promote neurogenesis and the Hsc70 signaling pathway.
PMID:40141445 | PMC:PMC11943016 | DOI:10.3390/ijms26062804