Knockdown of ITGA2 Promotes Pyroptosis in Thyroid Cancer by Regulating the DNA Damage Response
pubmed: wnt1 2025-12-10
Front Biosci (Landmark Ed). 2025 Aug 18;30(8):27946. doi: 10.31083/FBL27946.
ABSTRACT
BACKGROUND: The most common endocrine cancer, thyroid carcinoma (TC), has a dismal prognosis when it reaches an advanced stage. Integrin α-2 (ITGA2) has been implicated in cancer progression, influencing both DNA damage and repair mechanisms. However, it is unknown how ITGA2 influences these processes in TC.
METHODS: ITGA2 was identified as a key prognostic gene for TC from the Cancer Genome Atlas-thyroid carcinoma (THCA), GSE3678, GSE29265, and GSE33630 datasets. Functional assays were used to evaluate the impact of ITGA2 knockdown on cell viability, migration, apoptosis, invasion, pyroptosis (N-terminal fragment of GSDME, GSDME-N), and cytotoxicity (Lactate dehydrogenase, LDH). DNA damage markers (phosphorylated histone H2AX on serine 139 (γ-H2AX), phosphorylated ataxia telangiectasia mutated (p-ATM), phosphorylated checkpoint kinase 2 (p-CHK2)) and the level of Reactive Oxygen Species (ROS) were used to assess oxidative stress. The impact of ITGA2 inhibition on Wnt/β-catenin signaling was evaluated, and a mouse xenograft model assessed tumor growth in vivo.
RESULTS: ITGA2 was significantly overexpressed in TC. Knockdown of ITGA2 significantly reduced cell viability, migration, and invasion, while promoting pyroptosis by upregulating cleaved-poly(ADP-ribose) polymerase (PARP) and GSDME-N. ITGA2 silencing also increased LDH activity, enhanced the expression of DNA damage markers (p-ATM, γ-H2AX, p-CHK2), and increased ROS levels. Furthermore, suppression of ITGA2 activity attenuated the Wnt/β-catenin pathway by reducing the levels of MYC proto-oncogene, bHLH transcription factor (C-myc), CD44 molecule (CD44), slug, snail, β-catenin, and wingless-type MMTV integration site family, member 1 (Wnt-1). ITGA2 silencing significantly inhibited tumor growth in a mouse model.
CONCLUSION: ITGA2 promotes TC progression by regulating the DNA damage response and inhibiting pyroptosis. Knockdown of ITGA2 increases oxidative stress, exacerbates DNA damage, and inhibits the Wnt/β-catenin pathway, indicating it may have potential as a treatment target in TC.
PMID:40917053 | DOI:10.31083/FBL27946