WISP-1 induced by mechanical stress contributes to fibrosis and hypertrophy of the ligamentum flavum through Hedgehog-Gli1 signaling
pubmed: wnt1 2021-06-27
Exp Mol Med. 2021 Jun 22. doi: 10.1038/s12276-021-00636-5. Online ahead of print.
ABSTRACT
Ongoing chronic fibrosis and hypertrophy of the ligamentum flavum (LF) is an important cause of lumbar spinal canal stenosis (LSCS). Our previous work showed that WNT1-inducible signaling pathway protein 1 (WISP-1) is a critical driver of LF fibrosis. However, the potential mechanism has not been explored. Here, we found that Gli1 was upregulated in hypertrophic LF tissues and required for fibrogenesis in fibroblasts. Moreover, mechanical stretching increased the expression of WISP-1 in LF fibroblasts. Furthermore, WISP-1 induced fibrogenesis in vitro through the Hedgehog-Gli1 pathway. This conclusion was supported by the fact that WISP-1 activated the Hedgehog-Gli1 pathway in LF fibroblasts and that cyclopamine attenuated the effect of WISP-1-induced fibrogenesis. WISP-1 also promoted the transition of fibroblasts into myofibroblasts via the Hedgehog pathway. Importantly, a hypertrophic LF rabbit model induced by mechanical stress also showed pathological changes in fibrosis and elevated expression of WISP-1, Gli1, and α-SMA. Therapeutic administration of cyclopamine reduced collagen expression, fibroblast proliferation, and myofibroblast differentiation and ameliorated fibrosis in the mechanical stress-induced rabbit model. Collectively, our findings show mechanical stress/WISP-1/Hedgehog signaling as a new fibrotic axis contributing to LF hypertrophy and identify Hedgehog signaling as a therapeutic target for the prevention and treatment of LF fibrosis.
PMID:34158608 | DOI:10.1038/s12276-021-00636-5