CgWnt-1 regulates haemocyte proliferation during immune response of oyster Crassostrea gigas

pubmed: wnt1 2023-09-30

Dev Comp Immunol. 2023 Sep;146:104744. doi: 10.1016/j.dci.2023.104744. Epub 2023 May 23.

ABSTRACT

Recent findings regarding the immunomodulatory role of Wnt signaling suggest that it is significant in regulating the differentiation and proliferation of immune cells. In the present study, a Wnt-1 homolog (designated as CgWnt-1) with a conserved WNT1 domain was identified from oyster Crassostrea gigas. The transcripts of CgWnt-1 were barely expressed in egg to gastrula stage during early embryogenesis, and up-regulated significantly in the trochophore to juvenile stage. The mRNA transcripts of CgWnt-1 were detected in different tissues of adult oyster, with an extremely high expression level in the mantle, which was 77.38-fold (p < 0.05) of that in labial palp. After Vibrio splendidus stimulation, the mRNA expression levels of CgWnt-1 and Cgβ-catenin in haemocytes up-regulated significantly at 3, 12, 24, and 48 h (p < 0.05). After injection of recombinant protein (rCgWnt-1) into oyster in vivo, the expressions of Cgβ-catenin, cell proliferation related genes CgRunx-1 and CgCDK-2 in haemocytes significantly up-regulated, which were 4.86-fold (p < 0.05), 9.33-fold (p < 0.05), 6.09-fold (p < 0.05) of those in rTrx group, respectively. The percentage of EDU+ cells in haemocytes also significantly increased (2.88-fold of that in control group, p < 0.05) at 12 h after rCgWnt-1 treatment. When the Wnt signal inhibitor C59 was injected simultaneously with rCgWnt-1, the expressions of Cgβ-catenin, CgRunx-1, and CgCDK-2 were significantly reduced, which were 0.32-fold (p < 0.05), 0.16-fold (p < 0.05), and 0.25-fold (p < 0.05) of that in rCgWnt-1 group, respectively, and the percentage of EDU+ cells in haemocytes was also significantly inhibited (0.15-fold compared with that in rCgWnt-1 group, p < 0.05). These results suggested that the conserved CgWnt-1 could modulate haemocytes proliferation via regulating cell cycle related genes and involved in the immune response of oysters.

PMID:37230373 | DOI:10.1016/j.dci.2023.104744