Holomorphic images of disks
What's new 2020-11-28
Consider a disk in the complex plane. If one applies an affine-linear map
to this disk, one obtains
Theorem 1 (Holomorphic images of disks) Letbe a disk in the complex plane, and
be a holomorphic function with
.
- (i) (Open mapping theorem)
contains a disk
for some
.
- (ii) (Bloch theorem)
contains a disk
for some absolute constant
and some
. (In fact there is even a holomorphic right inverse of
from
to
.)
- (iii) (Koebe quarter theorem) If
is injective, then
contains the disk
.
- (iv) If
is a polynomial of degree
, then
contains the disk
.
- (v) If one has a bound of the form
for all
and some
, then
contains the disk
for some absolute constant
. (In fact there is holomorphic right inverse of
from
to
.)
Parts (i), (ii), (iii) of this theorem are standard, as indicated by the given links. I found part (iv) as (a consequence of) Theorem 2 of this paper of Degot, who remarks that it “seems not already known in spite of its simplicity”. The proof is simple:
Proof: (Proof of (iv)) Let , then we have a lower bound for the log-derivative of
at
:
The constant in (iv) is completely sharp: if
and
is non-zero then
contains the disk
Part (v) is implicit in the standard proof of Bloch’s theorem (part (ii)), and is easy to establish:
Proof: (Proof of (v)) From the Cauchy inequalities one has for
, hence by Taylor’s theorem with remainder
for
. By Rouche’s theorem, this implies that the function
has a unique zero in
for any
, if
is a sufficiently small absolute constant. The claim follows.
Note that part (v) implies part (i). A standard point picking argument also lets one deduce part (ii) from part (v):
Proof: (Proof of (ii)) By shrinking slightly if necessary we may assume that
extends analytically to the closure of the disk
. Let
be the constant in (v) with
; we will prove (iii) with
replaced by
. If we have
for all
then we are done by (v), so we may assume without loss of generality that there is
such that
. If
for all
then by (v) we have