The inverse theorem for the U^3 Gowers uniformity norm on arbitrary finite abelian groups: Fourier-analytic and ergodic approaches
What's new 2021-12-29
Asgar Jamneshan and myself have just uploaded to the arXiv our preprint “The inverse theorem for the Gowers uniformity norm on arbitrary finite abelian groups: Fourier-analytic and ergodic approaches“. This paper, which is a companion to another recent paper of ourselves and Or Shalom, studies the inverse theory for the third Gowers uniformity norm
Theorem 1 (Inverse theorem for) Let
be a finite abelian group, and let
be a
-bounded function with
for some
. Then:
- (i) (Correlation with locally quadratic phase) There exists a regular Bohr set
with
and
, a locally quadratic function
, and a function
such that
- (ii) (Correlation with nilsequence) There exists an explicit degree two filtered nilmanifold
of dimension
, a polynomial map
, and a Lipschitz function
of constant
such that
Such a theorem was proven by Ben Green and myself in the case when was odd, and by Samorodnitsky in the
-torsion case
. In all cases one uses the “higher order Fourier analysis” techniques introduced by Gowers. After some now-standard manipulations (using for instance what is now known as the Balog-Szemerédi-Gowers lemma), one arrives (for arbitrary
) at an estimate that is roughly of the form
So the key step is to obtain a representation of the form (1), possibly after shrinking the Bohr set a little if needed. This has been done in the literature in two ways:
- When
is odd, one has the ability to divide by
, and on the set
one can establish (1) with
. (This is similar to how in single variable calculus the function
is a function whose second derivative is equal to
.)
- When
, then after a change of basis one can take the Bohr set
to be
for some
, and the bilinear form can be written in coordinates as
for somewith
. The diagonal terms
cause a problem, but by subtracting off the rank one form
one can write
on the orthogonal complement offor some coefficients
which now vanish on the diagonal:
. One can now obtain (1) on this complement by taking
In our paper we can now treat the case of arbitrary finite abelian groups , by means of the following two new ingredients:
- (i) Using some geometry of numbers, we can lift the group
to a larger (possibly infinite, but still finitely generated) abelian group
with a projection map
, and find a globally bilinear map
on the latter group, such that one has a representation
of the locally bilinear formby the globally bilinear form
when
are close enough to the origin.
- (ii) Using an explicit construction, one can show that every globally bilinear map
has a representation of the form (1) for some globally quadratic function
.
To illustrate (i), consider the Bohr set in
(where
denotes the distance to the nearest integer), and consider a locally bilinear form
of the form
for some real number
and all integers
(which we identify with elements of
. For generic
, this form cannot be extended to a globally bilinear form on
; however if one lifts
to the finitely generated abelian group
To illustrate (ii), the key case turns out to be when is a cyclic group
, in which case
will take the form
This concludes the Fourier-analytic proof of Theorem 1. In this paper we also give an ergodic theory proof of (a qualitative version of) Theorem 1(ii), using a correspondence principle argument adapted from this previous paper of Ziegler, and myself. Basically, the idea is to randomly generate a dynamical system on the group , by selecting an infinite number of random shifts
, which induces an action of the infinitely generated free abelian group
on
by the formula
This transference principle approach seems to work well for the higher step cases (for instance, the stability of polynomials result is known in arbitrary degree); the main difficulty is to establish a suitable higher step inverse theorem in the ergodic theory setting, which we hope to do in future research.