An improvement to Bennett’s inequality for the Poisson distribution
What's new 2022-12-13
If , a Poisson random variable
with mean
is a random variable taking values in the natural numbers with probability distribution
Proposition 1 (Bennett’s inequality) One hasfor
and
for
, where
From the Taylor expansion for
we conclude Gaussian type tail bounds in the regime
(and in particular when
(in the spirit of the Chernoff, Bernstein, and Hoeffding inequalities). but in the regime where
is large and positive one obtains a slight gain over these other classical bounds (of
type, rather than
).
Proof: We use the exponential moment method. For any , we have from Markov’s inequality that
Remark 2 Bennett’s inequality also applies for (suitably normalized) sums of bounded independent random variables. In some cases there are direct comparison inequalities available to relate those variables to the Poisson case. For instance, supposeis the sum of independent Boolean variables
of total mean
and with
for some
. Then for any natural number
, we have
As such, for
small, one can efficiently control the tail probabilities of
in terms of the tail probability of a Poisson random variable of mean close to
; this is of course very closely related to the well known fact that the Poisson distribution emerges as the limit of sums of many independent boolean variables, each of which is non-zero with small probability. See this paper of Bentkus and this paper of Pinelis for some further useful (and less obvious) comparisons inequality of this type.
In this note I wanted to record the observation that one can improve the Bennett bound by a small polynomial factor once one leaves the Gaussian regime , in particular gaining a factor of
when
. This observation is not difficult and is implicitly in the literature (one can extract it for instance from the much more general results of this paper of Talagrand, and the basic idea already appears in this paper of Glynn), but I was not able to find a clean version of this statement in the literature, so I am placing it here on my blog. (But if a reader knows of a reference that basically contains the bound below, I would be happy to know of it.)
Proposition 3 (Improved Bennett’s inequality) One hasfor
and
for
.
Proof: We begin with the first inequality. We may assume that , since otherwise the claim follows from the usual Bennett inequality. We expand out the left-hand side as
Now we turn to the second inequality. As before we may assume that . We first dispose of a degenerate case in which
. Here the left-hand side is just
It remains to consider the regime where and
. The left-hand side expands as
The same analysis can be reversed to show that the bounds given above are basically sharp up to constants, at least when (and
) are large.