Revisiting Arc Midpoints in Complex Numbers

Power Overwhelming 2018-03-12

1. Synopsis

One of the major headaches of using complex numbers in olympiad geometry problems is dealing with square roots. In particular, it is nontrivial to express the incenter of a triangle inscribed in the unit circle in terms of its vertices.

The following lemma is the standard way to set up the arc midpoints of a triangle. It appears for example as part (a) of Lemma 6.23.

Theorem 1 (Arc midpoint setup for a triangle)

Let {ABC} be a triangle with circumcircle {\Gamma} and let {M_A}, {M_B}, {M_C} denote the arc midpoints of {\widehat{BC}} opposite {A}, {\widehat{CA}} opposite {B}, {\widehat{AB}} opposite {C}.

Suppose we view {\Gamma} as the unit circle in the complex plane. Then there exist complex numbers {x}, {y}, {z} such that {A = x^2}, {B = y^2}, {C = z^2}, and

\displaystyle M_A = -yz, \quad M_B = -zx, \quad M_C = -xy.

Theorem 1 is often used in combination with the following lemma, which lets one assign the incenter the coordinates {-(xy+yz+zx)} in the above notation.

Lemma 2 (The incenter is the orthocenter of opposite arc midpoints)

Let {ABC} be a triangle with circumcircle {\Gamma} and let {M_A}, {M_B}, {M_C} denote the arc midpoints of {\widehat{BC}} opposite {A}, {\widehat{CA}} opposite {B}, {\widehat{AB}} opposite {C}. Then the incenter of {\triangle ABC} coincides with the orthocenter of {\triangle M_A M_B M_C}.

Unfortunately, the proof of Theorem 1 in my textbook is wrong, and cannot find a proof online (though I hear that Lemmas in Olympiad Geometry has a proof). So in this post I will give a correct proof of Theorem 1, which will hopefully also explain the mysterious introduction of the minus signs in the theorem statement. In addition I will give a version of the theorem valid for quadrilaterals.

2. A Word of Warning

I should at once warn the reader that Theorem 1 is an existence result, and thus must be applied carefully.

To see why this matters, consider the following problem, which appeared as problem 1 of the 2016 JMO.

Example 3 (JMO 2016, by Zuming feng)

The isosceles triangle {\triangle ABC}, with {AB=AC}, is inscribed in the circle {\omega}. Let {P} be a variable point on the arc {BC} that does not contain {A}, and let {I_B} and {I_C} denote the incenters of triangles {\triangle ABP} and {\triangle ACP}, respectively. Prove that as {P} varies, the circumcircle of triangle {\triangle PI_{B}I_{C}} passes through a fixed point.

By experimenting with the diagram, it is not hard to guess that the correct fixed point is the midpoint of arc {\widehat{BC}}, as seen in the figure below. One might be tempted to write {A = x^2}, {B = y^2}, {C = z^2}, {P = t^2} and assert the two incenters are {-(xy+yt+xt)} and {-(xz+zt+xt)}, and that the fixed point is {-yz}.

This is a mistake! If one applies Theorem 1 twice, then the choices of “square roots” of the common vertices {A} and {P} may not be compatible. In fact, they cannot be compatible, because the arc midpoint of {\widehat{AP}} opposite {B} is different from the arc midpoint of {\widehat{AP}} opposite {C}.

In fact, I claim this is not a minor issue that one can work around. This is because the claim that the circumcircle of {\triangle P I_B I_C} passes through the midpoint of arc {\widehat{BC}} is false if {P} lies on the arc on the same side as {A}! In that case it actually passes through {A} instead. Thus the truth of the problem really depends on the fact that the quadrilateral {ABPC} is convex, and any attempt with complex numbers must take this into account to have a chance of working.

3. Proof of the theorem for triangles

Fix {ABC} now, so we require {A = x^2}, {B = y^2}, {C = z^2}. There are {2^3 = 8} choices of square roots {x}, {y}, {z} we can take (differing by a sign); we wish to show one of them works.

We pick an arbitrary choice for {x} first. Then, of the two choices of {y}, we pick the one such that {-xy = M_C}. Similarly, for the two choices of {z}, we pick the one such that {-xz = M_B}. Our goal is to show that under these conditions, we have {M_A = -yz} again.

The main trick is to now consider the arc midpoint {\widehat{BAC}}, which we denote by {L}. It is easy to see that:

Lemma 4 (The isosceles trapezoid trick)

We have {\overline{AL} \parallel \overline{M_B M_C}} (both are perpendicular to the {\angle A} bisector). Thus {A L M_B M_C} is an isosceles trapezoid, and so { A \cdot L = M_B \cdot M_C }.

Thus, we have

\displaystyle L = \frac{M_B M_C}{A} = \frac{(-xz)(-xy)}{x^2} = +yz.

Thus

\displaystyle M_A = -L = -yz

as desired.

From this we can see why the minus signs are necessary.

Exercise 5

Show that Theorem 1 becomes false if we try to use {+yz}, {+zx}, {+xy} instead of {-yz}, {-zx}, {-xy}.

4. A version for quadrilaterals

We now return to the setting of a convex quadrilateral {ABPC} that we encountered in Example 3. Suppose we preserve the variables {x}, {y}, {z} that we were given from Theorem 1, but now add a fourth complex number {t} with {P = t^2}. How are the new arc midpoints determined? The following theorem answers this question.

Theorem 6 ({xytz} setup)

Let {ABPC} be a convex quadrilateral inscribed in the unit circle of the complex plane. Then we can choose complex numbers {x}, {y}, {z}, {t} such that {A = x^2}, {B = y^2}, {C = z^2}, {P = t^2} and:

  • The opposite arc midpoints {M_A}, {M_B}, {M_C} of triangle {ABC} are given by {-yz}, {-zx}, {-xy}, as before.
  • The midpoint of arc {\widehat{BP}} not including {A} or {C} is given by {+yt}.
  • The midpoint of arc {\widehat{CP}} not including {A} or {B} is given by {-zt}.
  • The midpoint of arc {\widehat{ABP}} is {+xt} and the midpoint of arc {\widehat{ACP}} is {-xt}.

This setup is summarized in the following figure.

Note that unlike Theorem 1, the four arcs cut out by the sides of {ABCP} do not all have the same sign (I chose {\widehat{BP}} to have coordinates {+yt}). This asymmetry is inevitable (see if you can understand why from the proof below).

Proof: We select {x}, {y}, {z} with Theorem 1. Now, pick a choice of {t} such that {+yt} is the arc midpoint of {\widehat{BP}} not containing {A} and {C}. Then the arc midpoint of {\widehat{CP}} not containing {A} or {B} is given by

\displaystyle \frac{z^2}{-yz} \cdot (+yt) = -zt.

On the other hand, the calculation of {-xt} for the midpoint of {\widehat{ABP}} follows by applying Lemma 4 again. (applied to triangle {ABP}). The midpoint of {\widehat{ACP}} is computed similarly. \Box

In other problems, the four vertices of the quadrilateral may play more symmetric roles and in that case it may be desirable to pick a setup in which the four vertices are labeled {ABCD} in order. By relabeling the letters in Theorem 6 one can prove the following alternate formulation.

Corollary 7

Let {ABCD} be a convex quadrilateral inscribed in the unit circle of the complex plane. Then we can choose complex numbers {a}, {b}, {c}, {d} such that {A = a^2}, {B = b^2}, {C = c^2}, {D = d^2} and:

  • The midpoints of {\widehat{AB}}, {\widehat{BC}}, {\widehat{CD}}, {\widehat{DA}} cut out by the sides of {ABCD} are {-ab}, {-bc}, {-cd}, {+da}.
  • The midpoints of {\widehat{ABC}} and {\widehat{BCD}} are {+ac} and {+bd}.
  • The midpoints of {\widehat{CDA}} and {\widehat{DAB}} are {-ac} and {-bd}.

To test the newfound theorem, here is a cute easy application.

Example 8 (Japanese theorem for cyclic quadrilaterals)

In a cyclic quadrilateral {ABCD}, the incenters of {\triangle ABC}, {\triangle BCD}, {\triangle CDA}, {\triangle DAB} are the vertices of a rectangle.