Large Language Models and Artificial Neural Networks for Assessing 1-Year Mortality in Patients With Myocardial Infarction: Analysis From the Medical Information Mart for Intensive Care IV (MIMIC-IV) Database

database[Title] 2025-05-14

J Med Internet Res. 2025 May 12;27:e67253. doi: 10.2196/67253.

ABSTRACT

BACKGROUND: Accurate mortality risk prediction is crucial for effective cardiovascular risk management. Recent advancements in artificial intelligence (AI) have demonstrated potential in this specific medical field. Qwen-2 and Llama-3 are high-performance, open-source large language models (LLMs) available online. An artificial neural network (ANN) algorithm derived from the SWEDEHEART (Swedish Web System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies) registry, termed SWEDEHEART-AI, can predict patient prognosis following acute myocardial infarction (AMI).

OBJECTIVE: This study aims to evaluate the 3 models mentioned above in predicting 1-year all-cause mortality in critically ill patients with AMI.

METHODS: The Medical Information Mart for Intensive Care IV (MIMIC-IV) database is a publicly available data set in critical care medicine. We included 2758 patients who were first admitted for AMI and discharged alive. SWEDEHEART-AI calculated the mortality rate based on each patient's 21 clinical variables. Qwen-2 and Llama-3 analyzed the content of patients' discharge records and directly provided a 1-decimal value between 0 and 1 to represent 1-year death risk probabilities. The patients' actual mortality was verified using follow-up data. The predictive performance of the 3 models was assessed and compared using the Harrell C-statistic (C-index), the area under the receiver operating characteristic curve (AUROC), calibration plots, Kaplan-Meier curves, and decision curve analysis.

RESULTS: SWEDEHEART-AI demonstrated strong discrimination in predicting 1-year all-cause mortality in patients with AMI, with a higher C-index than Qwen-2 and Llama-3 (C-index 0.72, 95% CI 0.69-0.74 vs C-index 0.65, 0.62-0.67 vs C-index 0.56, 95% CI 0.53-0.58, respectively; all P<.001 for both comparisons). SWEDEHEART-AI also showed high and consistent AUROC in the time-dependent ROC curve. The death rates calculated by SWEDEHEART-AI were positively correlated with actual mortality, and the 3 risk classes derived from this model showed clear differentiation in the Kaplan-Meier curve (P<.001). Calibration plots indicated that SWEDEHEART-AI tended to overestimate mortality risk, with an observed-to-expected ratio of 0.478. Compared with the LLMs, SWEDEHEART-AI demonstrated positive and greater net benefits at risk thresholds below 19%.

CONCLUSIONS: SWEDEHEART-AI, a trained ANN model, demonstrated the best performance, with strong discrimination and clinical utility in predicting 1-year all-cause mortality in patients with AMI from an intensive care cohort. Among the LLMs, Qwen-2 outperformed Llama-3 and showed moderate predictive value. Qwen-2 and SWEDEHEART-AI exhibited comparable classification effectiveness. The future integration of LLMs into clinical decision support systems holds promise for accurate risk stratification in patients with AMI; however, further research is needed to optimize LLM performance and address calibration issues across diverse patient populations.

PMID:40354652 | DOI:10.2196/67253