Systematic analysis of immune cell motility leveraging the open intravital microscopy database Immunemap
database[Title] 2025-11-23
EMBO J. 2025 Nov 20. doi: 10.1038/s44318-025-00629-4. Online ahead of print.
ABSTRACT
Understanding the spatiotemporal dynamics of immune cells in living organisms is a major goal in bioimaging. Intravital microscopy enables direct observation of cellular behavior over time with tissue-to-subcellular resolution, making it essential for investigating immune responses across tissues, conditions, and disease contexts. However, most intravital microscopy data remain siloed in individual labs, limiting reuse, standardization, and large-scale analysis. To address these limitations, we present Immunemap, an open-data platform and interactive atlas of immune cell motility. Immunemap currently provides access to over 58,000 curated single-cell tracks and more than 1,049,000 cell-centroid annotations from 400 intravital microscopy videos in murine models, spanning diverse tissues and conditions. The platform supports both exploratory and quantitative research. We show here how unsupervised learning identifies distinct motility patterns, and how large-scale mapping enables comparisons across stimuli, imaging setups, and organs. Its cloud-based architecture offers an interactive web interface and public APIs for integration with computational pipelines. By adhering to FAIR principles (Findability, Accessibility, Interoperability, and Reuse) and fostering cross-disciplinary studies, Immunemap supports reproducible research and provides a benchmark for bioimage analysis and tool development in intravital imaging.
PMID:41266653 | DOI:10.1038/s44318-025-00629-4