miRStart 2.0: enhancing miRNA regulatory insights through deep learning-based TSS identification

(database[TitleAbstract]) AND (Nucleic acids research[Journal]) 2025-03-07

Summary:

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to the 3'-untranslated regions of target mRNAs, influencing various biological processes at the post-transcriptional level. Identifying miRNA transcription start sites (TSSs) and transcription factors' (TFs) regulatory roles is crucial for elucidating miRNA function and transcriptional regulation. miRStart 2.0 integrates over 4500 high-throughput datasets across five data types, utilizing a multi-modal approach...

Link:

https://pubmed.ncbi.nlm.nih.gov/39578697/?utm_source=Other&utm_medium=rss&utm_campaign=pubmed-2&utm_content=1VsHRGSo3HX0CgC40wRgBdaScQKv8CRE2sO_GaWJzhPEXTSQfX&fc=20220129230418&ff=20250307180207&v=2.18.0.post9+e462414

From feeds:

📚BioDBS Bibliography » (database[TitleAbstract]) AND (Nucleic acids research[Journal])

Tags:

Authors:

Jiatong Xu, Jingting Wan, Hsi-Yuan Huang, Yigang Chen, Yixian Huang, Junyang Huang, Ziyue Zhang, Chang Su, Yuming Zhou, Xingqiao Lin, Yang-Chi-Dung Lin, Hsien-Da Huang

Date tagged:

03/07/2025, 18:03

Date published:

11/23/2024, 06:00