Fisheries data management systems in the NW Mediterranean: from data collection to web visualization

Database (Oxford) 2024-04-26

Database (Oxford). 2023 Oct 20;2023:baad067. doi: 10.1093/database/baad067.

ABSTRACT

The European Union Data Collection Framework (DCF) states that scientific data-driven assessments are essential to achieve sustainable fisheries. To respond to the DCF call, this study introduces the information systems developed and used by Institut Català de Recerca per a la Governança del Mar (ICATMAR), the Catalan Institute of Research for the Governance of the Seas. The information systems include data from a biological monitoring, curation, processing, analysis, publication and web visualization for bottom trawl fisheries. Over the 4 years of collected data (2019-2022), the sampling program developed a dataset of over 1.1 million sampled individuals accounting for 24.6 tons of catch. The sampling data are ingested into a database through a data input website ensuring data management control and quality. The standardized metrics are automatically calculated and the data are published in the web visualizer, combined with fishing landings and Vessel Monitoring System (VMS) records. As the combination of remote sensing data with fisheries monitoring offers new approaches for ecosystem assessment, the collected fisheries data are also visualized in combination with georeferenced seabed habitats from the European Marine Observation and Data Network (EMODnet), climate and sea conditions from Copernicus Monitoring Environment Marine Service (CMEMS) on the web browser. Three public web-based products have been developed in the visualizer: geolocated bottom trawl samplings, biomass distribution per port or season and length-frequency charts per species. These information systems aim to fulfil the gaps in the scientific community, administration and civil society to access high-quality data for fisheries management, following the Findable, Accessible, Interoperable, Reusable (FAIR) principles, enabling scientific knowledge transfer. Database URL https://icatmar.github.io/VISAP/(www.icatmar.cat).

PMID:37864836 | PMC:PMC10590195 | DOI:10.1093/database/baad067